Distributed Learning with Discretely Observed Functional Data
- URL: http://arxiv.org/abs/2410.02376v1
- Date: Thu, 3 Oct 2024 10:49:34 GMT
- Title: Distributed Learning with Discretely Observed Functional Data
- Authors: Jiading Liu, Lei Shi,
- Abstract summary: This paper combines distributed spectral algorithms with Sobolev kernels to tackle the functional linear regression problem.
The hypothesis function spaces of the algorithms are the Sobolev spaces generated by the Sobolev kernels.
We derive matching upper and lower bounds for the convergence of the distributed spectral algorithms in the Sobolev norm.
- Score: 1.4583059436979549
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By selecting different filter functions, spectral algorithms can generate various regularization methods to solve statistical inverse problems within the learning-from-samples framework. This paper combines distributed spectral algorithms with Sobolev kernels to tackle the functional linear regression problem. The design and mathematical analysis of the algorithms require only that the functional covariates are observed at discrete sample points. Furthermore, the hypothesis function spaces of the algorithms are the Sobolev spaces generated by the Sobolev kernels, optimizing both approximation capability and flexibility. Through the establishment of regularity conditions for the target function and functional covariate, we derive matching upper and lower bounds for the convergence of the distributed spectral algorithms in the Sobolev norm. This demonstrates that the proposed regularity conditions are reasonable and that the convergence analysis under these conditions is tight, capturing the essential characteristics of functional linear regression. The analytical techniques and estimates developed in this paper also enhance existing results in the previous literature.
Related papers
- A general error analysis for randomized low-rank approximation with application to data assimilation [42.57210316104905]
We propose a framework for the analysis of the low-rank approximation error in Frobenius norm for centered and non-standard matrices.
Under minimal assumptions, we derive accurate bounds in expectation and probability.
Our bounds have clear interpretations that enable us to derive properties and motivate practical choices.
arXiv Detail & Related papers (2024-05-08T04:51:56Z) - A Structure-Preserving Kernel Method for Learning Hamiltonian Systems [3.594638299627404]
A structure-preserving kernel ridge regression method is presented that allows the recovery of potentially high-dimensional and nonlinear Hamiltonian functions.
The paper extends kernel regression methods to problems in which loss functions involving linear functions of gradients are required.
A full error analysis is conducted that provides convergence rates using fixed and adaptive regularization parameters.
arXiv Detail & Related papers (2024-03-15T07:20:21Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Statistical Optimality of Divide and Conquer Kernel-based Functional
Linear Regression [1.7227952883644062]
This paper studies the convergence performance of divide-and-conquer estimators in the scenario that the target function does not reside in the underlying kernel space.
As a decomposition-based scalable approach, the divide-and-conquer estimators of functional linear regression can substantially reduce the algorithmic complexities in time and memory.
arXiv Detail & Related papers (2022-11-20T12:29:06Z) - Capacity dependent analysis for functional online learning algorithms [8.748563565641279]
This article provides convergence analysis of online gradient descent algorithms for functional linear models.
We show that capacity assumption can alleviate the saturation of the convergence rate as the regularity of the target function increases.
arXiv Detail & Related papers (2022-09-25T11:21:18Z) - Reinforcement Learning from Partial Observation: Linear Function Approximation with Provable Sample Efficiency [111.83670279016599]
We study reinforcement learning for partially observed decision processes (POMDPs) with infinite observation and state spaces.
We make the first attempt at partial observability and function approximation for a class of POMDPs with a linear structure.
arXiv Detail & Related papers (2022-04-20T21:15:38Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
Motivated by the problem of online correlation analysis, we propose the emphStochastic Scaled-Gradient Descent (SSD) algorithm.
We bring these ideas together in an application to online correlation analysis, deriving for the first time an optimal one-time-scale algorithm with an explicit rate of local convergence to normality.
arXiv Detail & Related papers (2021-12-29T18:46:52Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
We analyze a Newton algorithm for homogeneous distributed convex optimization, where each machine can calculate gradients of the same population objective.
We show that our method can reduce the number, and frequency, of required communication rounds compared to existing methods without hurting performance.
arXiv Detail & Related papers (2021-10-07T17:51:10Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Optimal oracle inequalities for solving projected fixed-point equations [53.31620399640334]
We study methods that use a collection of random observations to compute approximate solutions by searching over a known low-dimensional subspace of the Hilbert space.
We show how our results precisely characterize the error of a class of temporal difference learning methods for the policy evaluation problem with linear function approximation.
arXiv Detail & Related papers (2020-12-09T20:19:32Z) - Statistical optimality and stability of tangent transform algorithms in
logit models [6.9827388859232045]
We provide conditions on the data generating process to derive non-asymptotic upper bounds to the risk incurred by the logistical optima.
In particular, we establish local variation of the algorithm without any assumptions on the data-generating process.
We explore a special case involving a semi-orthogonal design under which a global convergence is obtained.
arXiv Detail & Related papers (2020-10-25T05:15:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.