Clinnova Federated Learning Proof of Concept: Key Takeaways from a Cross-border Collaboration
- URL: http://arxiv.org/abs/2410.02443v1
- Date: Thu, 3 Oct 2024 12:40:52 GMT
- Title: Clinnova Federated Learning Proof of Concept: Key Takeaways from a Cross-border Collaboration
- Authors: Julia Alekseenko, Bram Stieltjes, Michael Bach, Melanie Boerries, Oliver Opitz, Alexandros Karargyris, Nicolas Padoy,
- Abstract summary: Clinnova-MS aims to enhance MS patient care by using FL to develop more accurate models that detect disease progression, guide interventions, and validate digital biomarkers across multiple sites.
This technical report presents insights and key takeaways from the first cross-border federated POC on MS segmentation of MRI images within the Clinnova framework.
- Score: 38.4546326469195
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Clinnova, a collaborative initiative involving France, Germany, Switzerland, and Luxembourg, is dedicated to unlocking the power of precision medicine through data federation, standardization, and interoperability. This European Greater Region initiative seeks to create an interoperable European standard using artificial intelligence (AI) and data science to enhance healthcare outcomes and efficiency. Key components include multidisciplinary research centers, a federated biobanking strategy, a digital health innovation platform, and a federated AI strategy. It targets inflammatory bowel disease, rheumatoid diseases, and multiple sclerosis (MS), emphasizing data quality to develop AI algorithms for personalized treatment and translational research. The IHU Strasbourg (Institute of Minimal-invasive Surgery) has the lead in this initiative to develop the federated learning (FL) proof of concept (POC) that will serve as a foundation for advancing AI in healthcare. At its core, Clinnova-MS aims to enhance MS patient care by using FL to develop more accurate models that detect disease progression, guide interventions, and validate digital biomarkers across multiple sites. This technical report presents insights and key takeaways from the first cross-border federated POC on MS segmentation of MRI images within the Clinnova framework. While our work marks a significant milestone in advancing MS segmentation through cross-border collaboration, it also underscores the importance of addressing technical, logistical, and ethical considerations to realize the full potential of FL in healthcare settings.
Related papers
- FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models.
FEDMEKI allows medical foundation models to learn from a broader spectrum of medical knowledge without direct data exposure.
arXiv Detail & Related papers (2024-08-17T15:18:56Z) - Open Challenges and Opportunities in Federated Foundation Models Towards Biomedical Healthcare [14.399086205317358]
Foundation models (FMs) are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback.
These models are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.
The incorporation of FL with these sophisticated models presents a promising strategy to harness their analytical power while safeguarding the privacy of sensitive medical data.
arXiv Detail & Related papers (2024-05-10T19:22:24Z) - Enhancing Breast Cancer Diagnosis in Mammography: Evaluation and Integration of Convolutional Neural Networks and Explainable AI [0.0]
The study presents an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer.
The methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations.
A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions.
arXiv Detail & Related papers (2024-04-05T05:00:21Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
We introduce textbfAI Hospital, a framework simulating dynamic medical interactions between emphDoctor as player and NPCs.
This setup allows for realistic assessments of LLMs in clinical scenarios.
We develop the Multi-View Medical Evaluation benchmark, utilizing high-quality Chinese medical records and NPCs.
arXiv Detail & Related papers (2024-02-15T06:46:48Z) - Multimodal Federated Learning in Healthcare: a Review [5.983768682145731]
Federated Learning (FL) provides a decentralized mechanism where data need not be consolidated.
This paper outlines the current state-of-the-art approaches to Multimodal Federated Learning (MMFL) within the healthcare domain.
It aims to bridge the gap between cutting-edge AI technology and the imperative need for patient data privacy in healthcare applications.
arXiv Detail & Related papers (2023-10-14T19:43:06Z) - Multi-Site Clinical Federated Learning using Recursive and Attentive
Models and NVFlare [13.176351544342735]
This paper develops an integrated framework that addresses data privacy and regulatory compliance challenges.
It includes the development of an integrated framework that addresses data privacy and regulatory compliance challenges while maintaining elevated accuracy and substantiating the efficacy of the proposed approach.
arXiv Detail & Related papers (2023-06-28T17:00:32Z) - Cross-center Early Sepsis Recognition by Medical Knowledge Guided
Collaborative Learning for Data-scarce Hospitals [9.148163615040364]
Sepsis can be diagnosed by satisfying both suspicion of infection and Sequential Organ Failure Assessment (SOFA) greater than or equal to 2.
We propose a novel cross-center collaborative learning framework guided by medical knowledge, SofaNet, to achieve early recognition of sepsis.
arXiv Detail & Related papers (2023-02-11T14:30:01Z) - Closing the Generalization Gap of Cross-silo Federated Medical Image
Segmentation [66.44449514373746]
Cross-silo federated learning (FL) has attracted much attention in medical imaging analysis with deep learning in recent years.
There can be a gap between the model trained from FL and one from centralized training.
We propose a novel training framework FedSM to avoid client issue and successfully close the drift gap.
arXiv Detail & Related papers (2022-03-18T19:50:07Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - CPAS: the UK's National Machine Learning-based Hospital Capacity
Planning System for COVID-19 [111.69190108272133]
The coronavirus disease 2019 poses the threat of overwhelming healthcare systems with unprecedented demands for intensive care resources.
We developed the COVID-19 Capacity Planning and Analysis System (CPAS) - a machine learning-based system for hospital resource planning.
CPAS is one of the first machine learning-based systems to be deployed in hospitals on a national scale to address the COVID-19 pandemic.
arXiv Detail & Related papers (2020-07-27T19:39:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.