論文の概要: Towards a Theoretical Understanding of Memorization in Diffusion Models
- arxiv url: http://arxiv.org/abs/2410.02467v2
- Date: Sun, 13 Oct 2024 16:51:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 03:11:05.518263
- Title: Towards a Theoretical Understanding of Memorization in Diffusion Models
- Title(参考訳): 拡散モデルにおける記憶の理論的理解に向けて
- Authors: Yunhao Chen, Xingjun Ma, Difan Zou, Yu-Gang Jiang,
- Abstract要約: 拡散確率モデル(DPM)は、生成人工知能(GenAI)の主流モデルとして採用されている。
モデル収束を前提とした条件付きおよび非条件付きDPMにおける記憶の理論的理解を提供する。
本研究では、生成されたデータに基づいて訓練された時間依存型分類器を代理条件として利用し、無条件DPMからトレーニングデータを抽出する、textbfSurrogate condItional Data extract (SIDE) という新しいデータ抽出手法を提案する。
- 参考スコア(独自算出の注目度): 76.85077961718875
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As diffusion probabilistic models (DPMs) are being employed as mainstream models for Generative Artificial Intelligence (GenAI), the study of their memorization of training data has attracted growing attention. Existing works in this direction aim to establish an understanding of whether or to what extent DPMs learn via memorization. Such an understanding is crucial for identifying potential risks of data leakage and copyright infringement in diffusion models and, more importantly, for trustworthy application of GenAI. Existing works revealed that conditional DPMs are more prone to training data memorization than unconditional DPMs, and the motivated data extraction methods are mostly for conditional DPMs. However, these understandings are primarily empirical, and extracting training data from unconditional models has been found to be extremely challenging. In this work, we provide a theoretical understanding of memorization in both conditional and unconditional DPMs under the assumption of model convergence. Our theoretical analysis indicates that extracting data from unconditional models can also be effective by constructing a proper surrogate condition. Based on this result, we propose a novel data extraction method named \textbf{Surrogate condItional Data Extraction (SIDE)} that leverages a time-dependent classifier trained on the generated data as a surrogate condition to extract training data from unconditional DPMs. Empirical results demonstrate that our SIDE can extract training data in challenging scenarios where previous methods fail, and it is, on average, over 50\% more effective across different scales of the CelebA dataset.
- Abstract(参考訳): 拡散確率モデル(DPM)が生成人工知能(GenAI)の主流モデルとして採用されているため、トレーニングデータの記憶の研究が注目されている。
この方向の既存の研究は、DPMが記憶を通じてどの程度の程度を学ぶかを理解することを目的としている。
このような理解は、拡散モデルにおけるデータ漏洩や著作権侵害の潜在的なリスクを特定し、さらに重要なのは、GenAIの信頼できる応用のために重要である。
既存の研究によると、条件付きDPMは非条件付きDPMよりもデータ記憶の訓練に適しており、モチベーション付きデータ抽出法は主に条件付きDPMである。
しかし、これらの理解は主に経験的であり、無条件モデルからトレーニングデータを抽出することは極めて困難であることが判明した。
本研究では、モデル収束の仮定の下で、条件付きおよび非条件付きDPMの記憶に関する理論的理解を提供する。
理論解析により,無条件モデルからデータを抽出することは,適切な代理条件を構築することでも有効であることが示唆された。
この結果に基づき、生成したデータに基づいて訓練された時間依存分類器を代理条件として利用し、無条件のDPMからトレーニングデータを抽出する新しいデータ抽出手法である「textbf{Surrogate condItional Data extract (SIDE)」を提案する。
実証的な結果から、SIDEは以前の手法が失敗し、平均してCelebAデータセットのさまざまなスケールで50%以上有効であるような、困難なシナリオでトレーニングデータを抽出できることを示した。
関連論文リスト
- Extracting Training Data from Unconditional Diffusion Models [76.85077961718875]
拡散確率モデル(DPM)は、生成人工知能(AI)の主流モデルとして採用されている。
本研究の目的は,1) 理論解析のための記憶量,2) 情報ラベルとランダムラベルを用いた条件記憶量,3) 記憶量測定のための2つのより良い評価指標を用いて,DPMにおける記憶量の理論的理解を確立することである。
提案手法は,理論解析に基づいて,SIDE (textbfSurrogate condItional Data extract) と呼ばれる新しいデータ抽出手法を提案する。
論文 参考訳(メタデータ) (2024-06-18T16:20:12Z) - Self-Consistency Training for Density-Functional-Theory Hamiltonian Prediction [74.84850523400873]
ハミルトン予測は自己整合性理論を持ち,自己整合性トレーニングを提案する。
これにより、大量のラベルのないデータでモデルをトレーニングできるため、データの不足に対処できる。
一連のクエリに対してDFT計算を補正するため、教師付きトレーニングのためのラベルを生成するのにDFTを実行するより効率的である。
論文 参考訳(メタデータ) (2024-03-14T16:52:57Z) - Intriguing Properties of Data Attribution on Diffusion Models [33.77847454043439]
データ帰属は、望ましいアウトプットをトレーニングデータに戻そうとする。
データ属性は、高直感的または著作権のあるデータを適切に割り当てるためのモジュールになっている。
論文 参考訳(メタデータ) (2023-11-01T13:00:46Z) - SCME: A Self-Contrastive Method for Data-free and Query-Limited Model
Extraction Attack [18.998300969035885]
モデル抽出は、代替モデル上で逆例を生成することによって、ターゲットモデルを騙す。
本稿では,偽データの合成におけるクラス間およびクラス内多様性を考慮した,SCME という新しいデータフリーモデル抽出手法を提案する。
論文 参考訳(メタデータ) (2023-10-15T10:41:45Z) - On Memorization in Diffusion Models [46.656797890144105]
より小さなデータセットでは記憶の挙動が生じる傾向があることを示す。
我々は、有効モデル記憶(EMM)の観点から、影響因子がこれらの記憶行動に与える影響を定量化する。
本研究は,拡散モデル利用者にとって実用的意義を持ち,深部生成モデルの理論研究の手がかりを提供する。
論文 参考訳(メタデータ) (2023-10-04T09:04:20Z) - Deep Generative Modeling-based Data Augmentation with Demonstration
using the BFBT Benchmark Void Fraction Datasets [3.341975883864341]
本稿では、画像データ生成に広く用いられている深部生成モデル(DGM)の科学的データ拡張への応用について検討する。
トレーニングが完了すると、DGMはトレーニングデータに類似した合成データを生成し、データセットのサイズを大幅に拡大するために使用することができる。
論文 参考訳(メタデータ) (2023-08-19T22:19:41Z) - Data-SUITE: Data-centric identification of in-distribution incongruous
examples [81.21462458089142]
Data-SUITEは、ID(In-distriion)データの不連続領域を特定するためのデータ中心のフレームワークである。
我々は,Data-SUITEの性能保証とカバレッジ保証を実証的に検証する。
論文 参考訳(メタデータ) (2022-02-17T18:58:31Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
因果グラフ(CG)は、データ分散の背後にあるデータ生成プロセスの知識のコンパクトな表現である。
本研究では,条件付き独立性(CI)関係の事前知識を活用可能なモデルに依存しないデータ拡張手法を提案する。
本手法は,小データシステムにおける予測精度の向上に有効であることを実験的に示した。
論文 参考訳(メタデータ) (2021-02-27T06:13:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。