Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
- URL: http://arxiv.org/abs/2410.02490v1
- Date: Thu, 3 Oct 2024 13:55:49 GMT
- Title: Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold
- Authors: Hoang Phuc Hau Luu, Hanlin Yu, Bernardo Williams, Marcelo Hartmann, Arto Klami,
- Abstract summary: We propose a novel variance-reduced estimator for optimization in the Bures-Wasserstein space.
We show that this estimator has a smaller variance than the Monte-Carlo estimator in scenarios of interest.
We demonstrate that the proposed estimator gains order-of-magnitude improvements over the previous Bures-Wasserstein methods.
- Score: 4.229248343585333
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimization in the Bures-Wasserstein space has been gaining popularity in the machine learning community since it draws connections between variational inference and Wasserstein gradient flows. The variational inference objective function of Kullback-Leibler divergence can be written as the sum of the negative entropy and the potential energy, making forward-backward Euler the method of choice. Notably, the backward step admits a closed-form solution in this case, facilitating the practicality of the scheme. However, the forward step is no longer exact since the Bures-Wasserstein gradient of the potential energy involves "intractable" expectations. Recent approaches propose using the Monte Carlo method -- in practice a single-sample estimator -- to approximate these terms, resulting in high variance and poor performance. We propose a novel variance-reduced estimator based on the principle of control variates. We theoretically show that this estimator has a smaller variance than the Monte-Carlo estimator in scenarios of interest. We also prove that variance reduction helps improve the optimization bounds of the current analysis. We demonstrate that the proposed estimator gains order-of-magnitude improvements over the previous Bures-Wasserstein methods.
Related papers
- A Stein Gradient Descent Approach for Doubly Intractable Distributions [5.63014864822787]
We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions.
The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.
arXiv Detail & Related papers (2024-10-28T13:42:27Z) - Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
We address the computational efficiency in solving the A-optimal Bayesian design of experiments problems.
A-optimality is a widely used and easy-to-interpret criterion for Bayesian experimental design.
This study presents a novel likelihood-free approach to the A-optimal experimental design.
arXiv Detail & Related papers (2023-06-30T12:40:43Z) - Positive definite nonparametric regression using an evolutionary
algorithm with application to covariance function estimation [0.0]
We propose a novel nonparametric regression framework for estimating covariance functions of stationary processes.
Our method can impose positive definiteness, as well as isotropy and monotonicity, on the estimators.
Our method provides more reliable estimates for long-range dependence.
arXiv Detail & Related papers (2023-04-25T22:01:14Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Regret-Optimal Filtering [57.51328978669528]
We consider the problem of filtering in linear state-space models through the lens of regret optimization.
We formulate a novel criterion for filter design based on the concept of regret between the estimation error energy of a clairvoyant estimator.
We show that the regret-optimal estimator can be easily implemented by solving three Riccati equations and a single Lyapunov equation.
arXiv Detail & Related papers (2021-01-25T19:06:52Z) - Quantized Variational Inference [6.09170287691728]
We show how Quantized Variational Inference produces variance free gradients for ELBO optimization.
We show that using Quantized Variational Inference framework leads to fast convergence for both score function and reparametrized gradient.
arXiv Detail & Related papers (2020-11-04T13:22:50Z) - Rao-Blackwellizing the Straight-Through Gumbel-Softmax Gradient
Estimator [93.05919133288161]
We show that the variance of the straight-through variant of the popular Gumbel-Softmax estimator can be reduced through Rao-Blackwellization.
This provably reduces the mean squared error.
We empirically demonstrate that this leads to variance reduction, faster convergence, and generally improved performance in two unsupervised latent variable models.
arXiv Detail & Related papers (2020-10-09T22:54:38Z) - Path Sample-Analytic Gradient Estimators for Stochastic Binary Networks [78.76880041670904]
In neural networks with binary activations and or binary weights the training by gradient descent is complicated.
We propose a new method for this estimation problem combining sampling and analytic approximation steps.
We experimentally show higher accuracy in gradient estimation and demonstrate a more stable and better performing training in deep convolutional models.
arXiv Detail & Related papers (2020-06-04T21:51:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.