Sequential Monte Carlo approximations of Wasserstein--Fisher--Rao gradient flows
- URL: http://arxiv.org/abs/2506.05905v1
- Date: Fri, 06 Jun 2025 09:24:46 GMT
- Title: Sequential Monte Carlo approximations of Wasserstein--Fisher--Rao gradient flows
- Authors: Francesca R. Crucinio, Sahani Pathiraja,
- Abstract summary: We consider several partial differential equations whose solution is a minimiser of the Kullback--Leibler divergence from $pi$.<n>We propose a novel algorithm to approximate the Wasserstein--Fisher--Rao flow of the Kullback--Leibler divergence.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of sampling from a probability distribution $\pi$. It is well known that this can be written as an optimisation problem over the space of probability distribution in which we aim to minimise the Kullback--Leibler divergence from $\pi$. We consider several partial differential equations (PDEs) whose solution is a minimiser of the Kullback--Leibler divergence from $\pi$ and connect them to well-known Monte Carlo algorithms. We focus in particular on PDEs obtained by considering the Wasserstein--Fisher--Rao geometry over the space of probabilities and show that these lead to a natural implementation using importance sampling and sequential Monte Carlo. We propose a novel algorithm to approximate the Wasserstein--Fisher--Rao flow of the Kullback--Leibler divergence which empirically outperforms the current state-of-the-art. We study tempered versions of these PDEs obtained by replacing the target distribution with a geometric mixture of initial and target distribution and show that these do not lead to a convergence speed up.
Related papers
- A note on the unique properties of the Kullback--Leibler divergence for sampling via gradient flows [0.0]
We consider the problem of sampling from a probability distribution $pi$.<n>We show that the Kullback--Leibler divergence is the only divergence in the family of Bregman divergences.
arXiv Detail & Related papers (2025-07-06T10:34:38Z) - A Stein Gradient Descent Approach for Doubly Intractable Distributions [5.63014864822787]
We propose a novel Monte Carlo Stein variational gradient descent (MC-SVGD) approach for inference for doubly intractable distributions.
The proposed method achieves substantial computational gains over existing algorithms, while providing comparable inferential performance for the posterior distributions.
arXiv Detail & Related papers (2024-10-28T13:42:27Z) - Stochastic variance-reduced Gaussian variational inference on the Bures-Wasserstein manifold [4.229248343585333]
We propose a novel variance-reduced estimator for optimization in the Bures-Wasserstein space.<n>We show that this estimator has a smaller variance than the Monte-Carlo estimator in scenarios of interest.<n>We demonstrate that the proposed estimator gains order-of-magnitude improvements over the previous Bures-Wasserstein methods.
arXiv Detail & Related papers (2024-10-03T13:55:49Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - Bayesian Circular Regression with von Mises Quasi-Processes [57.88921637944379]
In this work we explore a family of expressive and interpretable distributions over circle-valued random functions.<n>For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Gibbs sampling.<n>We present experiments applying this model to the prediction of wind directions and the percentage of the running gait cycle as a function of joint angles.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - Noise-Free Sampling Algorithms via Regularized Wasserstein Proximals [3.4240632942024685]
We consider the problem of sampling from a distribution governed by a potential function.
This work proposes an explicit score based MCMC method that is deterministic, resulting in a deterministic evolution for particles.
arXiv Detail & Related papers (2023-08-28T23:51:33Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
We propose a Monte Carlo PDE solver for training unsupervised neural solvers.<n>We use the PDEs' probabilistic representation, which regards macroscopic phenomena as ensembles of random particles.<n>Our experiments on convection-diffusion, Allen-Cahn, and Navier-Stokes equations demonstrate significant improvements in accuracy and efficiency.
arXiv Detail & Related papers (2023-02-10T08:05:19Z) - Non-asymptotic convergence bounds for Wasserstein approximation using
point clouds [0.0]
We show how to generate discrete data as if sampled from a model probability distribution.
We provide explicit upper bounds for the convergence-type algorithm.
arXiv Detail & Related papers (2021-06-15T06:53:08Z) - Large-Scale Wasserstein Gradient Flows [84.73670288608025]
We introduce a scalable scheme to approximate Wasserstein gradient flows.
Our approach relies on input neural networks (ICNNs) to discretize the JKO steps.
As a result, we can sample from the measure at each step of the gradient diffusion and compute its density.
arXiv Detail & Related papers (2021-06-01T19:21:48Z) - Stochastic Saddle-Point Optimization for Wasserstein Barycenters [69.68068088508505]
We consider the populationimation barycenter problem for random probability measures supported on a finite set of points and generated by an online stream of data.
We employ the structure of the problem and obtain a convex-concave saddle-point reformulation of this problem.
In the setting when the distribution of random probability measures is discrete, we propose an optimization algorithm and estimate its complexity.
arXiv Detail & Related papers (2020-06-11T19:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.