論文の概要: Mixed-Session Conversation with Egocentric Memory
- arxiv url: http://arxiv.org/abs/2410.02503v1
- Date: Thu, 3 Oct 2024 14:06:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:51:33.670843
- Title: Mixed-Session Conversation with Egocentric Memory
- Title(参考訳): エゴセントリックメモリを用いた混合セッション会話
- Authors: Jihyoung Jang, Taeyoung Kim, Hyounghun Kim,
- Abstract要約: 現在の対話システムは、複数のパートナーを含む動的、連続的、長期的相互作用を複製することができない。
マルチセッション対話システムであるMixed-Session Conversationを導入する。
Egocentric Enhanced Mixed-Session Conversation Agent (EMMA) と呼ばれる新しいメモリ管理機構を備えた対話モデルを提案する。
- 参考スコア(独自算出の注目度): 9.51807813140613
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently introduced dialogue systems have demonstrated high usability. However, they still fall short of reflecting real-world conversation scenarios. Current dialogue systems exhibit an inability to replicate the dynamic, continuous, long-term interactions involving multiple partners. This shortfall arises because there have been limited efforts to account for both aspects of real-world dialogues: deeply layered interactions over the long-term dialogue and widely expanded conversation networks involving multiple participants. As the effort to incorporate these aspects combined, we introduce Mixed-Session Conversation, a dialogue system designed to construct conversations with various partners in a multi-session dialogue setup. We propose a new dataset called MiSC to implement this system. The dialogue episodes of MiSC consist of 6 consecutive sessions, with four speakers (one main speaker and three partners) appearing in each episode. Also, we propose a new dialogue model with a novel memory management mechanism, called Egocentric Memory Enhanced Mixed-Session Conversation Agent (EMMA). EMMA collects and retains memories from the main speaker's perspective during conversations with partners, enabling seamless continuity in subsequent interactions. Extensive human evaluations validate that the dialogues in MiSC demonstrate a seamless conversational flow, even when conversation partners change in each session. EMMA trained with MiSC is also evaluated to maintain high memorability without contradiction throughout the entire conversation.
- Abstract(参考訳): 近年,対話システムのユーザビリティが向上している。
しかし、現実の会話のシナリオを反映してはいない。
現在の対話システムは、複数のパートナーを含む動的、連続的、長期的相互作用を複製することができない。
この欠点は、長期対話における深い階層化相互作用と、複数の参加者を含む広範囲な会話ネットワークという、現実世界の対話の両側面を考慮しようとする努力が限られていることから生じる。
これらの側面を統合するために,多セッション対話システムであるMixed-Session Conversationを導入する。
このシステムを実装するために、MISCと呼ばれる新しいデータセットを提案する。
MiSCの対話エピソードは6つの連続セッションで構成され、各エピソードには4人のスピーカー(1人のメインスピーカー、3人のパートナー)が登場する。
また,新たなメモリ管理機構を備えた対話モデルであるEgocentric Memory Enhanced Mixed-Session Conversation Agent (EMMA)を提案する。
EMMAは、パートナーとの会話中にメインスピーカーの視点から記憶を収集し、保持し、その後の対話においてシームレスな連続を可能にする。
会話相手が各セッションで変化しても,MISCの対話はシームレスに会話の流れを示す。
MiSCで訓練したEMMAは、会話全体を通して矛盾なく高い記憶力を維持するために評価される。
関連論文リスト
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
GPT-4oのようなシステムで実証された音声対話モデルの最近の進歩は、音声領域において大きな注目を集めている。
これらの高度な音声対話モデルは、音声、音楽、その他の音声関連の特徴を理解するだけでなく、音声のスタイリスティックな特徴や音節的な特徴も捉える。
音声対話システムの進歩にもかかわらず、これらのシステムを体系的に組織化し分析する包括的調査が欠如している。
論文 参考訳(メタデータ) (2024-11-15T04:16:45Z) - A Static and Dynamic Attention Framework for Multi Turn Dialogue Generation [37.79563028123686]
オープンドメインマルチターン対話生成では,対話履歴の文脈意味論をモデル化することが不可欠である。
従来の研究は、オープンドメインマルチターン対話生成における階層的再帰エンコーダデコーダフレームワークの有効性を検証していた。
本稿では,対話履歴をモデル化し,オープンドメインのマルチターン対話応答を生成する静的かつ動的アテンションに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-10-28T06:05:34Z) - Let's Go Real Talk: Spoken Dialogue Model for Face-to-Face Conversation [55.043492250775294]
本稿では,新しい対面音声対話モデルを提案する。
ユーザ入力から音声視覚音声を処理し、応答として音声視覚音声を生成する。
また,最初の大規模マルチモーダル音声対話コーパスであるMultiDialogを紹介する。
論文 参考訳(メタデータ) (2024-06-12T04:48:36Z) - OmniDialog: An Omnipotent Pre-training Model for Task-Oriented Dialogue
System [43.92593448255296]
我々はOmnipotent Dialogue pre-training model(OmniDialog)を提案する。
3つの対話タスクをマルチタスク学習によってモノリシックなフレームワークに統合し、タスク間通信を促進する。
対話の要約、エンドツーエンドの対話モデリング、対話状態追跡、意図分類の4つのタスクでその性能を評価する。
論文 参考訳(メタデータ) (2023-12-28T07:20:49Z) - Conversation Chronicles: Towards Diverse Temporal and Relational
Dynamics in Multi-Session Conversations [9.249662593315541]
我々は,長期会話設定を実装するために,新たに100万件の多セッション対話データセットであるConversation Chroniclesを導入する。
会話年代記の対話エピソードは、一貫性と一貫した相互作用を維持しながら、それらの特性を反映していることを示す。
また、時系列要約と対話生成モジュールで構成されるReBotと呼ばれる対話モデルを提案する。
論文 参考訳(メタデータ) (2023-10-20T11:06:21Z) - HybriDialogue: An Information-Seeking Dialogue Dataset Grounded on
Tabular and Textual Data [87.67278915655712]
我々は、ウィキペディアのテキストとテーブルの両方を基盤とした、クラウドソーシングされた自然な会話からなる新しい対話データセットHybriDialogueを提示する。
これらの会話は、複雑なマルチホップ質問をシンプルで現実的なマルチターン対話に分解することで生成される。
論文 参考訳(メタデータ) (2022-04-28T00:52:16Z) - UniDS: A Unified Dialogue System for Chit-Chat and Task-oriented
Dialogues [59.499965460525694]
上記の2つのスキルを備えた統合対話システム(UniDS)を提案する。
我々は、チャットとタスク指向の対話の両方に対応可能な統合対話データスキーマを設計する。
我々は、事前訓練されたチャット対話モデルから混合対話データでUniDSを訓練する。
論文 参考訳(メタデータ) (2021-10-15T11:56:47Z) - "How Robust r u?": Evaluating Task-Oriented Dialogue Systems on Spoken
Conversations [87.95711406978157]
本研究は、音声タスク指向会話における新しいベンチマークを示す。
マルチドメイン対話状態追跡と知識基底型対話モデルについて検討する。
我々のデータセットは,タスク指向対話システムの音声によるベンチマークを可能にする。
論文 参考訳(メタデータ) (2021-09-28T04:51:04Z) - DialogLM: Pre-trained Model for Long Dialogue Understanding and
Summarization [19.918194137007653]
本稿では,長い対話理解と要約のための事前学習フレームワークを提案する。
長い会話の性質を考慮し、生成前学習のためのウィンドウベースの認知的アプローチを提案する。
我々は,対話要約,抽象的質問応答,トピックセグメンテーションのタスクをカバーする,長文対話の5つのデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-09-06T13:55:03Z) - Attention over Parameters for Dialogue Systems [69.48852519856331]
我々は,異なる対話スキルを個別にパラメータ化する対話システムを学び,AoP(Attention over Parameters)を通じてそれぞれを選択し,組み合わせることを学ぶ。
実験の結果,MultiWOZ,In-Car Assistant,Persona-Chatの複合データセット上での競合性能が得られた。
論文 参考訳(メタデータ) (2020-01-07T03:10:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。