論文の概要: DEMO: Reframing Dialogue Interaction with Fine-grained Element Modeling
- arxiv url: http://arxiv.org/abs/2412.04905v3
- Date: Wed, 19 Feb 2025 07:42:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-20 13:57:38.253581
- Title: DEMO: Reframing Dialogue Interaction with Fine-grained Element Modeling
- Title(参考訳): DEMO: きめ細かい要素モデリングによるリフレーミング対話インタラクション
- Authors: Minzheng Wang, Xinghua Zhang, Kun Chen, Nan Xu, Haiyang Yu, Fei Huang, Wenji Mao, Yongbin Li,
- Abstract要約: 大規模言語モデル (LLM) によって実現された対話システムは、人間と機械の相互作用において中心的なモードの1つとなっている。
本稿では,新しい研究課題--$textbfD$ialogue $textbfE$lement $textbfMO$delingを紹介する。
本稿では,包括的対話モデリングと評価のために設計された新しいベンチマークである$textbfDEMO$を提案する。
- 参考スコア(独自算出の注目度): 73.08187964426823
- License:
- Abstract: Large language models (LLMs) enabled dialogue systems have become one of the central modes in human-machine interaction, which bring about vast amounts of conversation logs and increasing demand for dialogue generation. The dialogue's life-cycle spans from $\textit{Prelude}$ through $\textit{Interlocution}$ to $\textit{Epilogue}$, encompassing rich dialogue elements. Despite large volumes of dialogue-related studies, there is a lack of systematic investigation into the dialogue stages to frame benchmark construction that covers comprehensive dialogue elements. This hinders the precise modeling, generation and assessment of LLMs-based dialogue systems. To bridge this gap, in this paper, we introduce a new research task--$\textbf{D}$ialogue $\textbf{E}$lement $\textbf{MO}$deling, including $\textit{Element Awareness}$ and $\textit{Dialogue Agent Interaction}$, and propose a novel benchmark, $\textbf{DEMO}$, designed for a comprehensive dialogue modeling and assessment. On this basis, we further build the DEMO agent with the adept ability to model dialogue elements via imitation learning. Extensive experiments on DEMO indicate that current representative LLMs still have considerable potential for enhancement, and our DEMO agent performs well in both dialogue element modeling and out-of-domain tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)により、対話システムは人間と機械の相互作用において中心的なモードの1つとなり、対話ログの膨大な増加と対話生成の需要が高まっている。
ダイアログのライフサイクルは$\textit{Prelude}$から$\textit{Interlocution}$から$\textit{Epilogue}$に及び、豊富なダイアログ要素を含んでいる。
対話関連研究は多岐にわたるが, 総合的な対話要素を網羅するベンチマーク構築のための対話段階に関する体系的な研究は乏しい。
これにより、LLMに基づく対話システムの正確なモデリング、生成、評価が妨げられる。
このギャップを埋めるために、本稿では、新しい研究タスク--$\textbf{D}$ialogue $\textbf{E}$lement $\textbf{MO}$deling($\textit{Element Awareness}$および$\textit{Dialogue Agent Interaction}$を含む)を導入し、包括的な対話モデリングと評価のために設計された新しいベンチマークである$\textbf{DEMO}$を提案する。
そこで本研究では,模倣学習により対話要素をモデル化できるDEMOエージェントをさらに構築する。
DEMOの広範囲な実験により、現在のLLMは拡張の可能性を秘めており、私たちのDEMOエージェントは対話要素のモデリングとドメイン外タスクの両方でうまく機能することが示された。
関連論文リスト
- Contextual Data Augmentation for Task-Oriented Dialog Systems [8.085645180329417]
本研究では,ユーザターンを生成する新しいダイアログ拡張モデルを構築し,完全なダイアログコンテキストを条件づける。
言語モデルの新しいプロンプト設計と出力の再ランク付けにより、我々のモデルから生成されたダイアログを直接使用して、下流ダイアログシステムのトレーニングを行うことができる。
論文 参考訳(メタデータ) (2023-10-16T13:22:34Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
大規模言語モデル(LLM)の理解能力を高めるための新たな「自己説明(Self-Explanation)」を提案する。
このタスクに依存しないアプローチでは、タスク実行前の各対話発話を分析し、様々な対話中心のタスクのパフォーマンスを向上させる必要がある。
6つのベンチマークデータセットによる実験結果から,本手法は他のゼロショットプロンプトよりも一貫して優れており,数ショットプロンプトの有効性を超えていることが明らかとなった。
論文 参考訳(メタデータ) (2023-09-22T15:41:34Z) - Multi-turn Dialogue Comprehension from a Topic-aware Perspective [70.37126956655985]
本稿では,話題認識の観点から,マルチターン対話をモデル化することを提案する。
対話文のセグメント化アルゴリズムを用いて、対話文を教師なしの方法でトピック集中フラグメントに分割する。
また,トピックセグメントを処理要素として扱う新しいモデルとして,トピック認識デュアルアテンションマッチング(TADAM)ネットワークを提案する。
論文 参考訳(メタデータ) (2023-09-18T11:03:55Z) - STRUDEL: Structured Dialogue Summarization for Dialogue Comprehension [42.57581945778631]
抽象的な対話要約は、自然言語処理における重要なスタンドアロンタスクとみなされてきた。
本稿では,新たな対話要約タスクであるSTRUctured DiaLoguE Summarizationを提案する。
変換器エンコーダ言語モデルの対話理解性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2022-12-24T04:39:54Z) - Manual-Guided Dialogue for Flexible Conversational Agents [84.46598430403886]
対話データを効率的に構築し、利用する方法や、さまざまなドメインにモデルを大規模にデプロイする方法は、タスク指向の対話システムを構築する上で重要な問題である。
エージェントは対話とマニュアルの両方からタスクを学習する。
提案手法は,詳細なドメインオントロジーに対する対話モデルの依存性を低減し,様々なドメインへの適応をより柔軟にする。
論文 参考訳(メタデータ) (2022-08-16T08:21:12Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
ダイアログのための大規模事前学習言語モデルであるGODELを紹介する。
GODELは、数ショットの微調整設定で、最先端の事前訓練ダイアログモデルより優れていることを示す。
評価手法の新たな特徴は,応答の有用性を評価するユーティリティの概念の導入である。
論文 参考訳(メタデータ) (2022-06-22T18:19:32Z) - Dialogue Meaning Representation for Task-Oriented Dialogue Systems [51.91615150842267]
タスク指向対話のための柔軟かつ容易に拡張可能な表現である対話意味表現(DMR)を提案する。
我々の表現は、合成意味論とタスク固有の概念のためのリッチな意味論を表現するために、継承階層を持つノードとエッジのセットを含んでいる。
異なる機械学習ベースの対話モデルを評価するための2つの評価タスクを提案し、さらにグラフベースのコア参照解決タスクのための新しいコア参照解決モデルGNNCorefを提案する。
論文 参考訳(メタデータ) (2022-04-23T04:17:55Z) - Multimodal Dialogue Response Generation [27.611204319057393]
本稿では,対話履歴を入力とし,テキストシーケンスや画像を応答として生成するマルチモーダル対話生成モデルを提案する。
我々は、限られた訓練例しか利用できないという自然な仮定の下で、マルチモーダルな対話生成を考える。
このような低リソース環境では、モデル全体の多モーダル対話に依存するパラメータを分離するために、新しい対話エージェントであるDivterを考案する。
論文 参考訳(メタデータ) (2021-10-16T08:52:26Z) - DialogLM: Pre-trained Model for Long Dialogue Understanding and
Summarization [19.918194137007653]
本稿では,長い対話理解と要約のための事前学習フレームワークを提案する。
長い会話の性質を考慮し、生成前学習のためのウィンドウベースの認知的アプローチを提案する。
我々は,対話要約,抽象的質問応答,トピックセグメンテーションのタスクをカバーする,長文対話の5つのデータセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-09-06T13:55:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。