論文の概要: Methods of Automatic Matrix Language Determination for Code-Switched Speech
- arxiv url: http://arxiv.org/abs/2410.02521v2
- Date: Thu, 14 Nov 2024 19:36:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:36:14.164630
- Title: Methods of Automatic Matrix Language Determination for Code-Switched Speech
- Title(参考訳): 符号切替音声の自動行列言語決定法
- Authors: Olga Iakovenko, Thomas Hain,
- Abstract要約: コードスイッチング (Code-switching, CS) は、2つ以上の言語間で話者が交流する過程である。
この研究において、マトリックス言語フレーム(MLF)理論は、マトリックス言語識別のためのシステムの開発に用いられた。
- 参考スコア(独自算出の注目度): 19.94790551312789
- License:
- Abstract: Code-switching (CS) is the process of speakers interchanging between two or more languages which in the modern world becomes increasingly common. In order to better describe CS speech the Matrix Language Frame (MLF) theory introduces the concept of a Matrix Language, which is the language that provides the grammatical structure for a CS utterance. In this work the MLF theory was used to develop systems for Matrix Language Identity (MLID) determination. The MLID of English/Mandarin and English/Spanish CS text and speech was compared to acoustic language identity (LID), which is a typical way to identify a language in monolingual utterances. MLID predictors from audio show higher correlation with the textual principles than LID in all cases while also outperforming LID in an MLID recognition task based on F1 macro (60%) and correlation score (0.38). This novel approach has identified that non-English languages (Mandarin and Spanish) are preferred over the English language as the ML contrary to the monolingual choice of LID.
- Abstract(参考訳): コードスイッチング(Code-switching, CS)とは、2つ以上の言語間の話者交換プロセスであり、現代の世界ではますます一般的になっている。
CS音声をよりよく記述するために、マトリックス言語フレーム(MLF)理論は、CS発話の文法構造を提供する言語であるマトリックス言語の概念を導入している。
この研究において、MLID(Matrix Language Identity)決定のためのシステムを開発するために、MLF理論が用いられた。
英語/マンダリン語と英語/スペイン語のCSテキストと音声のMLIDは、単言語発話における言語識別の典型的な方法であるアコースティック言語アイデンティティ(LID)と比較された。
F1マクロ(60%)と相関スコア(0.38)に基づくMLID認識タスクにおいて,MLIDよりもLIDよりも高い相関性を示した。
この新しいアプローチは、英語以外の言語(マンダリン語とスペイン語)が、LIDの単言語的選択に反するMLとして英語よりも好まれていることを特定している。
関連論文リスト
- How Do Multilingual Models Remember? Investigating Multilingual Factual Recall Mechanisms [50.13632788453612]
大規模言語モデル(LLM)は、事前訓練中に取得した膨大な事実知識を格納し、取得する。
これらのプロセスが他の言語や多言語 LLM にどのように一般化されるのかという問題は未解明のままである。
言語がリコールプロセスにおいてどのような役割を果たすのかを考察し,言語に依存しない,言語に依存したメカニズムの証拠を明らかにする。
論文 参考訳(メタデータ) (2024-10-18T11:39:34Z) - Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models [11.423589362950812]
大規模言語モデル(LLM)は、特に多言語文脈において顕著な性能を示した。
近年の研究では、LLMは、ある言語で学んだスキルを他の言語に伝達することができることが示唆されているが、この能力の背後にある内部メカニズムはいまだ不明である。
本稿では,LLMの内部動作に関する知見を提供し,言語間能力の向上のための基盤を提供する。
論文 参考訳(メタデータ) (2024-10-15T15:49:15Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - MYTE: Morphology-Driven Byte Encoding for Better and Fairer Multilingual Language Modeling [70.34758460372629]
多様な言語にまたがる一貫した大きさのセグメントで同一情報をエンコードする新しいパラダイムを導入する。
MYTEは99の言語すべてに対して短いエンコーディングを生成する。
これにより、多言語LMの性能が向上し、多言語間でのパープレキシティギャップが減少する。
論文 参考訳(メタデータ) (2024-03-15T21:21:11Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - L1-aware Multilingual Mispronunciation Detection Framework [10.15106073866792]
本稿では,L1-Aware 音声表現に富んだ多言語MDDアーキテクチャ L1-MultiMDDを提案する。
入力信号とその対応する基準音素シーケンスに基づいて、エンドツーエンドの音声エンコーダを訓練する。
実験では、L1-MultiMDDフレームワークが、L2-ARTIC、LATIC、AraVoiceL2v2と、EpaDBとSpeechocean762データセットの両方で有効であることを示した。
論文 参考訳(メタデータ) (2023-09-14T13:53:17Z) - ALIGN-MLM: Word Embedding Alignment is Crucial for Multilingual
Pre-training [22.053123036772053]
補助的損失が類似した単語を異なる言語で案内し、類似した単語を埋め込みする事前学習対象(ALIGN-MLM)を提案する。
ALIGN-MLM は XLM よりも優れており,文字順と単語順の異なる言語間でのPOSタグ付けでは 35 点,30 F1 点が優れていることを示す。
論文 参考訳(メタデータ) (2022-11-15T22:37:27Z) - LAE: Language-Aware Encoder for Monolingual and Multilingual ASR [87.74794847245536]
言語固有の情報を混在させることにより,両状況に対処する新しい言語対応エンコーダ (LAE) アーキテクチャを提案する。
マンダリン・イングリッシュ・コードスウィッチ音声を用いた実験により,LAEはフレームレベルで異なる言語を識別できることが示唆された。
論文 参考訳(メタデータ) (2022-06-05T04:03:12Z) - Multi-level Contrastive Learning for Cross-lingual Spoken Language
Understanding [90.87454350016121]
コントラスト学習のための難解なサンプルを, あらゆるレベルで生成するコードスイッチング手法を開発した。
言語間知識伝達にラベルセマンティクスを利用するラベル認識ジョイントモデルを開発した。
論文 参考訳(メタデータ) (2022-05-07T13:44:28Z) - DICT-MLM: Improved Multilingual Pre-Training using Bilingual
Dictionaries [8.83363871195679]
主要な言語学習目的としてのマスケプド・モデリング(MLM)の目的。
DICT-MLMは、オリジナルのマスキングされた単語だけでなく、言語間の同義語も予測できるようにモデルにインセンティブを与える。
30以上の言語にまたがる複数の下流タスクに関する実証分析により,提案手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-10-23T17:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。