論文の概要: Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models
- arxiv url: http://arxiv.org/abs/2410.11718v1
- Date: Tue, 15 Oct 2024 15:49:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:02:33.831074
- Title: Converging to a Lingua Franca: Evolution of Linguistic Regions and Semantics Alignment in Multilingual Large Language Models
- Title(参考訳): リングア・フランカへの収束:多言語大言語モデルにおける言語領域の進化と意味論的アライメント
- Authors: Hongchuan Zeng, Senyu Han, Lu Chen, Kai Yu,
- Abstract要約: 大規模言語モデル(LLM)は、特に多言語文脈において顕著な性能を示した。
近年の研究では、LLMは、ある言語で学んだスキルを他の言語に伝達することができることが示唆されているが、この能力の背後にある内部メカニズムはいまだ不明である。
本稿では,LLMの内部動作に関する知見を提供し,言語間能力の向上のための基盤を提供する。
- 参考スコア(独自算出の注目度): 11.423589362950812
- License:
- Abstract: Large language models (LLMs) have demonstrated remarkable performance, particularly in multilingual contexts. While recent studies suggest that LLMs can transfer skills learned in one language to others, the internal mechanisms behind this ability remain unclear. We observed that the neuron activation patterns of LLMs exhibit similarities when processing the same language, revealing the existence and location of key linguistic regions. Additionally, we found that neuron activation patterns are similar when processing sentences with the same semantic meaning in different languages. This indicates that LLMs map semantically identical inputs from different languages into a "Lingua Franca", a common semantic latent space that allows for consistent processing across languages. This semantic alignment becomes more pronounced with training and increased model size, resulting in a more language-agnostic activation pattern. Moreover, we found that key linguistic neurons are concentrated in the first and last layers of LLMs, becoming denser in the first layers as training progresses. Experiments on BLOOM and LLaMA2 support these findings, highlighting the structural evolution of multilingual LLMs during training and scaling up. This paper provides insights into the internal workings of LLMs, offering a foundation for future improvements in their cross-lingual capabilities.
- Abstract(参考訳): 大規模言語モデル(LLM)は、特に多言語文脈において顕著な性能を示した。
最近の研究は、LLMがある言語で学んだスキルを他の言語に転送できることを示唆しているが、この能力の背後にある内部メカニズムはいまだ不明である。
我々は,LLMのニューロン活性化パターンが同一言語処理における類似性を示し,重要な言語領域の存在と位置を明らかにした。
さらに、異なる言語で同じ意味を持つ文を処理する際に、ニューロンの活性化パターンが類似していることが判明した。
このことは、LLMが異なる言語からのセマンティックに同一の入力を"Lingua Franca"にマッピングしていることを示している。
このセマンティックアライメントは、トレーニングとモデルサイズの増加によってより顕著になり、言語に依存しないアクティベーションパターンが生まれる。
さらに,LLMの第1層と第2層に重要な言語ニューロンが集中しており,訓練が進むにつれて第1層ではより密度が増すことがわかった。
BLOOMとLLaMA2の実験はこれらの知見を支持し、トレーニングおよびスケールアップ中の多言語LLMの構造的進化を強調している。
本稿では,LLMの内部動作に関する知見を提供し,言語間能力の向上のための基盤を提供する。
関連論文リスト
- How Do Multilingual Models Remember? Investigating Multilingual Factual Recall Mechanisms [50.13632788453612]
大規模言語モデル(LLM)は、事前訓練中に取得した膨大な事実知識を格納し、取得する。
これらのプロセスが他の言語や多言語 LLM にどのように一般化されるのかという問題は未解明のままである。
言語がリコールプロセスにおいてどのような役割を果たすのかを考察し,言語に依存しない,言語に依存したメカニズムの証拠を明らかにする。
論文 参考訳(メタデータ) (2024-10-18T11:39:34Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lensは、大規模言語モデル(LLM)の多言語機能を強化する新しいアプローチである
LLMの上位層から言語に依存しない、言語固有のサブ空間内の隠された表現を操作できる。
既存のポストトレーニング手法に比べて計算資源がはるかに少ないため、優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-06T08:51:30Z) - Linguistic Minimal Pairs Elicit Linguistic Similarity in Large Language Models [15.857451401890092]
我々はLarge Language Models(LLMs)が捉えた言語知識の定量化と洞察を得る。
3つの言語で100以上のLLMと150k以上の最小ペアにまたがる大規模な実験では、4つの重要な側面から言語的類似性の特性を明らかにした。
論文 参考訳(メタデータ) (2024-09-19T03:29:40Z) - Crosslingual Capabilities and Knowledge Barriers in Multilingual Large Language Models [62.91524967852552]
大規模言語モデル(LLM)は、多言語コーパスの事前訓練のため、一般的に多言語である。
しかし、これらのモデルは言語間で対応する概念を関連付けることができ、効果的にクロスランガルなのでしょうか?
本研究は,言語横断的課題に関する6つの技術 LLM の評価を行った。
論文 参考訳(メタデータ) (2024-06-23T15:15:17Z) - Getting More from Less: Large Language Models are Good Spontaneous Multilingual Learners [67.85635044939836]
大きな言語モデル(LLM)は印象的な言語機能を示している。
本研究では,LLMの自然多言語アライメント改善について検討する。
質問翻訳データ(すなわち注釈付き回答なし)に基づいて学習したLLMは、英語と幅広い言語との整合を促進できることがわかった。
論文 参考訳(メタデータ) (2024-05-22T16:46:19Z) - Language-Specific Neurons: The Key to Multilingual Capabilities in Large Language Models [117.20416338476856]
大規模言語モデル(LLM)は、特別にキュレートされた多言語並列コーパスで事前訓練されることなく、顕著な多言語機能を示す。
LLM内の言語特異的ニューロンを識別するための新しい検出手法である言語アクティベーション確率エントロピー(LAPE)を提案する。
以上の結果から,LLMが特定の言語を処理できる能力は,神経細胞のサブセットが少なすぎるためであることが示唆された。
論文 参考訳(メタデータ) (2024-02-26T09:36:05Z) - Unveiling Linguistic Regions in Large Language Models [49.298360366468934]
大規模言語モデル (LLM) は言語間アライメントと一般化能力を示す。
本稿では,LLMの言語能力に関するいくつかの調査を行う。
論文 参考訳(メタデータ) (2024-02-22T16:56:13Z) - Probing LLMs for Joint Encoding of Linguistic Categories [10.988109020181563]
大規模言語モデル(LLM)における言語カテゴリーの合同符号化をテストするためのフレームワークを提案する。
関連音声(POS)クラスと異なる(POSクラスと関連する構文依存関係)言語階層の双方で共同符号化の証拠を見いだした。
論文 参考訳(メタデータ) (2023-10-28T12:46:40Z) - Don't Trust ChatGPT when Your Question is not in English: A Study of
Multilingual Abilities and Types of LLMs [16.770697902481107]
大規模言語モデル(LLM)は、例外的な自然言語理解能力を示している。
本論文では,多言語環境下でのLLMの性能格差を体系的に評価する方法を提案する。
その結果,GPTは多言語設定において高い翻訳的振る舞いを示すことがわかった。
論文 参考訳(メタデータ) (2023-05-24T02:05:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。