The Benefit of Being Bayesian in Online Conformal Prediction
- URL: http://arxiv.org/abs/2410.02561v2
- Date: Thu, 22 May 2025 03:56:39 GMT
- Title: The Benefit of Being Bayesian in Online Conformal Prediction
- Authors: Zhiyu Zhang, Zhou Lu, Heng Yang,
- Abstract summary: We study the online construction of confidence sets given a black-box machine learning model.<n>By converting the target confidence levels into quantile levels, the problem can be reduced to predicting the quantiles of a sequentially revealed data sequence.
- Score: 7.713245413733777
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Based on the framework of Conformal Prediction (CP), we study the online construction of confidence sets given a black-box machine learning model. By converting the target confidence levels into quantile levels, the problem can be reduced to predicting the quantiles (in hindsight) of a sequentially revealed data sequence. Two very different approaches have been studied previously: (i) Assuming the data sequence is iid or exchangeable, one could maintain the empirical distribution of the observed data as an algorithmic belief, and directly predict its quantiles. (ii) Due to the fragility of statistical assumptions, a recent trend is to consider the non-distributional, adversarial setting and apply first-order online optimization algorithms to moving quantile losses. However, it requires the oracle knowledge of the target quantile level, and suffers from a previously overlooked monotonicity issue due to the associated loss linearization. This paper presents an adaptive CP algorithm that combines their strengths. Without any statistical assumption, it is able to answer multiple arbitrary confidence level queries with low regret, while also overcoming the monotonicity issue suffered by first-order optimization baselines. Furthermore, if the data sequence is actually iid, then the same algorithm is automatically equipped with the "correct" coverage probability guarantee. To achieve such strengths, our key technical innovation is to regularize the aforementioned algorithmic belief (the empirical distribution) by a Bayesian prior, which robustifies it by simulating a non-linearized Follow the Regularized Leader (FTRL) algorithm on the output. Such a belief update backbone is shared by prediction heads targeting different confidence levels, bringing practical benefits analogous to the recently proposed concept of U-calibration (Kleinberg et al., 2023).
Related papers
- A sparse PAC-Bayesian approach for high-dimensional quantile prediction [0.0]
This paper presents a novel probabilistic machine learning approach for high-dimensional quantile prediction.
It uses a pseudo-Bayesian framework with a scaled Student-t prior and Langevin Monte Carlo for efficient computation.
Its effectiveness is validated through simulations and real-world data, where it performs competitively against established frequentist and Bayesian techniques.
arXiv Detail & Related papers (2024-09-03T08:01:01Z) - Sequential Manipulation Against Rank Aggregation: Theory and Algorithm [119.57122943187086]
We leverage an online attack on the vulnerable data collection process.
From the game-theoretic perspective, the confrontation scenario is formulated as a distributionally robust game.
The proposed method manipulates the results of rank aggregation methods in a sequential manner.
arXiv Detail & Related papers (2024-07-02T03:31:21Z) - Conformal Validity Guarantees Exist for Any Data Distribution (and How to Find Them) [14.396431159723297]
We show that conformal prediction can theoretically be extended to textitany joint data distribution.
Although the most general case is exceedingly impractical to compute, for concrete practical applications we outline a procedure for deriving specific conformal algorithms.
arXiv Detail & Related papers (2024-05-10T17:40:24Z) - Echoes of Socratic Doubt: Embracing Uncertainty in Calibrated Evidential Reinforcement Learning [1.7898305876314982]
The proposed algorithm combines deep evidential learning with quantile calibration based on principles of conformal inference.
It is tested on a suite of miniaturized Atari games (i.e., MinAtar)
arXiv Detail & Related papers (2024-02-11T05:17:56Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
Cascades are a classical strategy to enable inference cost to vary adaptively across samples.
A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction.
Despite being oblivious to the structure of the cascade, confidence-based deferral often works remarkably well in practice.
arXiv Detail & Related papers (2023-07-06T04:13:57Z) - Efficient First-Order Contextual Bandits: Prediction, Allocation, and
Triangular Discrimination [82.52105963476703]
A recurring theme in statistical learning, online learning, and beyond is that faster convergence rates are possible for problems with low noise.
First-order guarantees are relatively well understood in statistical and online learning.
We show that the logarithmic loss and an information-theoretic quantity called the triangular discrimination play a fundamental role in obtaining first-order guarantees.
arXiv Detail & Related papers (2021-07-05T19:20:34Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
Uncertainty is the only certainty there is.
Traditionally, the direct regression formulation is considered and the uncertainty is modeled by modifying the output space to a certain family of probabilistic distributions.
How to model the uncertainty within the present-day technologies for regression remains an open issue.
arXiv Detail & Related papers (2021-03-25T06:56:09Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Estimation and Applications of Quantiles in Deep Binary Classification [0.0]
Quantile regression, based on check loss, is a widely used inferential paradigm in Statistics.
We consider the analogue of check loss in the binary classification setting.
We develop individualized confidence scores that can be used to decide whether a prediction is reliable.
arXiv Detail & Related papers (2021-02-09T07:07:42Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Fair Classification via Unconstrained Optimization [0.0]
We show that the Bayes optimal fair learning rule remains a group-wise thresholding rule over the Bayes regressor.
The proposed algorithm can be applied to any black-box machine learning model.
arXiv Detail & Related papers (2020-05-21T11:29:05Z) - Knowing what you know: valid and validated confidence sets in multiclass
and multilabel prediction [0.8594140167290097]
We develop conformal prediction methods for constructing valid confidence sets in multiclass and multilabel problems.
By leveraging ideas from quantile regression, we build methods that always guarantee correct coverage but additionally provide conditional coverage for both multiclass and multilabel prediction problems.
arXiv Detail & Related papers (2020-04-21T17:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.