Knowing what you know: valid and validated confidence sets in multiclass
and multilabel prediction
- URL: http://arxiv.org/abs/2004.10181v3
- Date: Fri, 10 Jul 2020 18:22:12 GMT
- Title: Knowing what you know: valid and validated confidence sets in multiclass
and multilabel prediction
- Authors: Maxime Cauchois and Suyash Gupta and John Duchi
- Abstract summary: We develop conformal prediction methods for constructing valid confidence sets in multiclass and multilabel problems.
By leveraging ideas from quantile regression, we build methods that always guarantee correct coverage but additionally provide conditional coverage for both multiclass and multilabel prediction problems.
- Score: 0.8594140167290097
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop conformal prediction methods for constructing valid predictive
confidence sets in multiclass and multilabel problems without assumptions on
the data generating distribution. A challenge here is that typical conformal
prediction methods---which give marginal validity (coverage)
guarantees---provide uneven coverage, in that they address easy examples at the
expense of essentially ignoring difficult examples. By leveraging ideas from
quantile regression, we build methods that always guarantee correct coverage
but additionally provide (asymptotically optimal) conditional coverage for both
multiclass and multilabel prediction problems. To address the potential
challenge of exponentially large confidence sets in multilabel prediction, we
build tree-structured classifiers that efficiently account for interactions
between labels. Our methods can be bolted on top of any classification
model---neural network, random forest, boosted tree---to guarantee its
validity. We also provide an empirical evaluation, simultaneously providing new
validation methods, that suggests the more robust coverage of our confidence
sets.
Related papers
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias [5.698050337128548]
Self-training is a well-known approach for semi-supervised learning. It consists of iteratively assigning pseudo-labels to unlabeled data for which the model is confident and treating them as labeled examples.
For neural networks, softmax prediction probabilities are often used as a confidence measure, although they are known to be overconfident, even for wrong predictions.
We propose a novel confidence measure, called $mathcalT$-similarity, built upon the prediction diversity of an ensemble of linear classifiers.
arXiv Detail & Related papers (2023-10-23T11:30:06Z) - Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
Cascades are a classical strategy to enable inference cost to vary adaptively across samples.
A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction.
Despite being oblivious to the structure of the cascade, confidence-based deferral often works remarkably well in practice.
arXiv Detail & Related papers (2023-07-06T04:13:57Z) - Birds of a Feather Trust Together: Knowing When to Trust a Classifier
via Adaptive Neighborhood Aggregation [30.34223543030105]
We show how NeighborAgg can leverage the two essential information via an adaptive neighborhood aggregation.
We also extend our approach to the closely related task of mislabel detection and provide a theoretical coverage guarantee to bound the false negative.
arXiv Detail & Related papers (2022-11-29T18:43:15Z) - Prediction Sets Adaptive to Unknown Covariate Shift [18.105704797438417]
We show that prediction sets with finite-sample coverage guarantee are uninformative.
We propose a novel flexible distribution-free method, PredSet-1Step, to efficiently construct prediction sets.
arXiv Detail & Related papers (2022-03-11T17:53:14Z) - Predictive Inference with Weak Supervision [3.1925030748447747]
We bridge the gap between partial supervision and validation by developing a conformal prediction framework.
We introduce a new notion of coverage and predictive validity, then develop several application scenarios.
We corroborate the hypothesis that the new coverage definition allows for tighter and more informative (but valid) confidence sets.
arXiv Detail & Related papers (2022-01-20T17:26:52Z) - Certifying Confidence via Randomized Smoothing [151.67113334248464]
Randomized smoothing has been shown to provide good certified-robustness guarantees for high-dimensional classification problems.
Most smoothing methods do not give us any information about the confidence with which the underlying classifier makes a prediction.
We propose a method to generate certified radii for the prediction confidence of the smoothed classifier.
arXiv Detail & Related papers (2020-09-17T04:37:26Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.