論文の概要: Deep Regression 2D-3D Ultrasound Registration for Liver Motion Correction in Focal Tumor Thermal Ablation
- arxiv url: http://arxiv.org/abs/2410.02579v1
- Date: Thu, 3 Oct 2024 15:24:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:22:08.474079
- Title: Deep Regression 2D-3D Ultrasound Registration for Liver Motion Correction in Focal Tumor Thermal Ablation
- Title(参考訳): 深部回帰2D-3D超音波による肝腫瘍温熱アブレーションの肝運動補正
- Authors: Shuwei Xing, Derek W. Cool, David Tessier, Elvis C. S. Chen, Terry M. Peters, Aaron Fenster,
- Abstract要約: 肝腫瘍のアブレーションは, 腫瘍中心部における針の塗布を正確に行う必要がある。
画像登録技術は、解剖学的詳細の解釈や腫瘍の同定に有効であるが、その臨床応用は、アライメント精度と実行時のパフォーマンスのトレードオフによって妨げられている。
肝運動によるエラーを軽減できる2D-3DUSレジストレーション手法を提案する。
- 参考スコア(独自算出の注目度): 5.585625844344932
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Liver tumor ablation procedures require accurate placement of the needle applicator at the tumor centroid. The lower-cost and real-time nature of ultrasound (US) has advantages over computed tomography (CT) for applicator guidance, however, in some patients, liver tumors may be occult on US and tumor mimics can make lesion identification challenging. Image registration techniques can aid in interpreting anatomical details and identifying tumors, but their clinical application has been hindered by the tradeoff between alignment accuracy and runtime performance, particularly when compensating for liver motion due to patient breathing or movement. Therefore, we propose a 2D-3D US registration approach to enable intra-procedural alignment that mitigates errors caused by liver motion. Specifically, our approach can correlate imbalanced 2D and 3D US image features and use continuous 6D rotation representations to enhance the model's training stability. The dataset was divided into 2388, 196 and 193 image pairs for training, validation and testing, respectively. Our approach achieved a mean Euclidean distance error of 2.28 mm $\pm$ 1.81 mm and a mean geodesic angular error of 2.99$^{\circ}$ $\pm$ 1.95$^{\circ}$, with a runtime of 0.22 seconds per 2D-3D US image pair. These results demonstrate that our approach can achieve accurate alignment and clinically acceptable runtime, indicating potential for clinical translation.
- Abstract(参考訳): 肝腫瘍のアブレーションは, 腫瘍中心部における針の塗布を正確に行う必要がある。
超音波(US)の低費用・リアルタイム性はCT(Computed tomography)よりも優れているが,一部の患者では肝腫瘍は米国に密着しており,腫瘍の模倣は病変の同定を困難にする可能性がある。
画像登録技術は、解剖学的詳細の解釈や腫瘍の同定に有効であるが、その臨床応用は、特に患者の呼吸や運動による肝臓の動きの補正において、アライメント精度と実行時のパフォーマンスのトレードオフによって妨げられている。
そこで本研究では,肝運動による誤りを軽減できる2D-3DUS登録手法を提案する。
具体的には,不均衡な2次元と3次元の米国画像の特徴を相関させ,連続した6次元回転表現を用いてモデルの訓練安定性を向上させる。
データセットはそれぞれ、トレーニング、検証、テストのために2388、196、193のイメージペアに分割された。
提案手法は,平均ユークリッド距離誤差 2.28 mm $\pm$ 1.81 mm および平均測地角誤差 2.99$^{\circ}$ $\pm$ 1.95$^{\circ}$ を達成した。
以上より,本手法は正確なアライメントと臨床的に許容されるランタイムを実現し,臨床翻訳の可能性を示している。
関連論文リスト
- Medical Slice Transformer: Improved Diagnosis and Explainability on 3D Medical Images with DINOv2 [1.6275928583134276]
医用スライストランスフォーマー(MST)フレームワークを導入し,3次元医用画像解析に2次元自己監督モデルを適用した。
MSTは畳み込みニューラルネットワークと比較して、診断精度と説明性の向上を提供する。
論文 参考訳(メタデータ) (2024-11-24T12:11:11Z) - Epicardium Prompt-guided Real-time Cardiac Ultrasound Frame-to-volume Registration [50.602074919305636]
本稿では,CU-Reg と呼ばれる,軽量でエンドツーエンドなカード・ツー・エンド・超音波フレーム・ツー・ボリューム・レジストレーション・ネットワークを提案する。
2次元スパースと3次元濃密な特徴の相互作用を増強するために,心内膜急速ガイドによる解剖学的手がかりを用い,その後,強化された特徴のボクセル的局所グロバル集約を行った。
論文 参考訳(メタデータ) (2024-06-20T17:47:30Z) - Accurate Patient Alignment without Unnecessary Imaging Dose via Synthesizing Patient-specific 3D CT Images from 2D kV Images [10.538839084727975]
腫瘍の視認性は2次元平面への患者の解剖学的投射により制限される。
コーンビームCT(CBCT)などの3D-OBI治療室では、CBCTの視野(FOV)は不要な高画像量に制限される。
本稿では, 階層型 ViT ブロックで構築した2次元モデルを用いて, 処理位置から得られた kV 画像から3次元CTを再構成する手法を提案する。
論文 参考訳(メタデータ) (2024-04-01T19:55:03Z) - An objective comparison of methods for augmented reality in laparoscopic
liver resection by preoperative-to-intraoperative image fusion [33.12510773034339]
腹腔鏡下肝切除のための拡張現実(Augmented reality)は、腹腔鏡下画像上に投射することで、外科医が肝臓内に埋め込まれた腫瘍や血管をローカライズできる可視化モードである。
ほとんどのアルゴリズムは、登録をガイドするために解剖学的ランドマークを使用している。
これらのランドマークには、肝臓の下尾根、ファルシホルムの靭帯、および閉塞輪郭が含まれる。
術中腹腔鏡下固定術(P2ILF)を施行し,これらのランドマークを自動的に検出し,登録する可能性について検討した。
論文 参考訳(メタデータ) (2024-01-28T20:30:14Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - On the Localization of Ultrasound Image Slices within Point Distribution
Models [84.27083443424408]
甲状腺疾患は高分解能超音波(US)で診断されることが多い
縦断追跡は病理甲状腺形態の変化をモニタリングするための重要な診断プロトコルである。
3次元形状表現におけるUS画像の自動スライスローカライズのためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-01T10:10:46Z) - The Impact of Loss Functions and Scene Representations for 3D/2D
Registration on Single-view Fluoroscopic X-ray Pose Estimation [1.758213853394712]
我々はまずデジタル再構成ラジオグラフィー(DRR)の効率的な計算のための微分可能プロジェクションレンダリングフレームワークを開発する。
次に, 合成したDRRの画像差を, 地表面の蛍光X線画像に対して定量化する, 様々な候補損失関数を用いて, 反復降下によるポーズ推定を行う。
Mutual Information Loss を用いて,50 人の頭蓋骨の断層X線データを用いて行ったポーズ推定を総合的に評価した結果,DiffProj における識別 (CBCT) とニューラル (NeTT/mNeRF) のシーン表現のどちらを用いたかが示唆された。
論文 参考訳(メタデータ) (2023-08-01T01:12:29Z) - Moving from 2D to 3D: volumetric medical image classification for rectal
cancer staging [62.346649719614]
術前T2期とT3期を区別することは直腸癌治療における最も困難かつ臨床的に重要な課題である。
直腸MRIでT3期直腸癌からT2を正確に判別するための体積畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-13T07:10:14Z) - A Deep Learning Localization Method for Measuring Abdominal Muscle
Dimensions in Ultrasound Images [2.309018557701645]
腰痛(LBP)患者に対する2次元(2D)超音波像を用いて, 腹筋次元を計測し, 治療計画の作成と診断に有用である。
可変性が高いため、サーバ内の信頼性を低くするためには、専門的な訓練を受けた熟練した専門家が測定を行う必要がある。
本稿では,2次元US画像の腹部筋厚測定を自動化するために,Deep Learning (DL) アプローチを用いる。
論文 参考訳(メタデータ) (2021-09-30T08:36:50Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
糖尿病患者は糖尿病網膜症(DR)を発症するリスクがある
コンピュータ支援型DR診断は、DRの早期検出と重度評価のための有望なツールである。
このデータセットは、ピクセルレベルのDR関連病変アノテーションを持つ1,842枚の画像と、6人の眼科医によって評価された画像レベルのラベルを持つ1,000枚の画像を有する。
論文 参考訳(メタデータ) (2020-08-22T07:48:04Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
本稿では,教師付き学習手法よりも少ないアノテーションを要求できる新しいカテーテルセグメンテーション手法を提案する。
提案手法では,Voxelレベルのアノテーションを避けるために,深層Q学習を事前局所化ステップとみなす。
検出されたカテーテルでは、パッチベースのDual-UNetを使用してカテーテルを3Dボリュームデータに分割する。
論文 参考訳(メタデータ) (2020-06-25T21:10:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。