Beyond Squared Error: Exploring Loss Design for Enhanced Training of Generative Flow Networks
- URL: http://arxiv.org/abs/2410.02596v1
- Date: Thu, 3 Oct 2024 15:37:22 GMT
- Title: Beyond Squared Error: Exploring Loss Design for Enhanced Training of Generative Flow Networks
- Authors: Rui Hu, Yifan Zhang, Zhuoran Li, Longbo Huang,
- Abstract summary: We show that distinct regression losses correspond to specific divergence measures, enabling us to design and analyze regression losses according to the desired properties of the corresponding divergence measures.
Based on our theoretical framework, we propose three novel regression losses, namely, Shifted-Cosh, Linex(1/2), and Linex(1).
Our proposed losses are compatible with most existing training algorithms, and significantly improve the performances of the algorithms concerning convergence speed, sample diversity, and robustness.
- Score: 36.084318189865066
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative Flow Networks (GFlowNets) are a novel class of generative models designed to sample from unnormalized distributions and have found applications in various important tasks, attracting great research interest in their training algorithms. In general, GFlowNets are trained by fitting the forward flow to the backward flow on sampled training objects. Prior work focused on the choice of training objects, parameterizations, sampling and resampling strategies, and backward policies, aiming to enhance credit assignment, exploration, or exploitation of the training process. However, the choice of regression loss, which can highly influence the exploration and exploitation behavior of the under-training policy, has been overlooked. Due to the lack of theoretical understanding for choosing an appropriate regression loss, most existing algorithms train the flow network by minimizing the squared error of the forward and backward flows in log-space, i.e., using the quadratic regression loss. In this work, we rigorously prove that distinct regression losses correspond to specific divergence measures, enabling us to design and analyze regression losses according to the desired properties of the corresponding divergence measures. Specifically, we examine two key properties: zero-forcing and zero-avoiding, where the former promotes exploitation and higher rewards, and the latter encourages exploration and enhances diversity. Based on our theoretical framework, we propose three novel regression losses, namely, Shifted-Cosh, Linex(1/2), and Linex(1). We evaluate them across three benchmarks: hyper-grid, bit-sequence generation, and molecule generation. Our proposed losses are compatible with most existing training algorithms, and significantly improve the performances of the algorithms concerning convergence speed, sample diversity, and robustness.
Related papers
- On Divergence Measures for Training GFlowNets [3.7277730514654555]
Generative Flow Networks (GFlowNets) are amortized inference models designed to sample from unnormalized distributions over composable objects.
Traditionally, the training procedure for GFlowNets seeks to minimize the expected log-squared difference between a proposal (forward policy) and a target (backward policy) distribution.
We review four divergence measures, namely, Renyi-$alpha$'s, Tsallis-$alpha$'s, reverse and forward KL's, and design statistically efficient estimators for their gradients in the context of training GFlowNets
arXiv Detail & Related papers (2024-10-12T03:46:52Z) - Simplicity bias and optimization threshold in two-layer ReLU networks [24.43739371803548]
We show that despite overparametrization, networks converge toward simpler solutions rather than interpolating the training data.
Our analysis relies on the so called early alignment phase, during which neurons align towards specific directions.
arXiv Detail & Related papers (2024-10-03T09:58:57Z) - Efficient Training of Deep Neural Operator Networks via Randomized Sampling [0.0]
Deep operator network (DeepNet) has demonstrated success in the real-time prediction of complex dynamics across various scientific and engineering applications.
We introduce a random sampling technique to be adopted the training of DeepONet, aimed at improving generalization ability of the model, while significantly reducing computational time.
Our results indicate that incorporating randomization in the trunk network inputs during training enhances the efficiency and robustness of DeepONet, offering a promising avenue for improving the framework's performance in modeling complex physical systems.
arXiv Detail & Related papers (2024-09-20T07:18:31Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
We introduce the unhinged loss, a concise loss function, that offers more mathematical opportunities to analyze closed-form dynamics.
The unhinged loss allows for considering more practical techniques, such as time-vary learning rates and feature normalization.
arXiv Detail & Related papers (2023-12-13T02:11:07Z) - Task-Robust Pre-Training for Worst-Case Downstream Adaptation [62.05108162160981]
Pre-training has achieved remarkable success when transferred to downstream tasks.
This paper considers pre-training a model that guarantees a uniformly good performance over the downstream tasks.
arXiv Detail & Related papers (2023-06-21T07:43:23Z) - Regression as Classification: Influence of Task Formulation on Neural
Network Features [16.239708754973865]
Neural networks can be trained to solve regression problems by using gradient-based methods to minimize the square loss.
practitioners often prefer to reformulate regression as a classification problem, observing that training on the cross entropy loss results in better performance.
By focusing on two-layer ReLU networks, we explore how the implicit bias induced by gradient-based optimization could partly explain the phenomenon.
arXiv Detail & Related papers (2022-11-10T15:13:23Z) - Learning GFlowNets from partial episodes for improved convergence and
stability [56.99229746004125]
Generative flow networks (GFlowNets) are algorithms for training a sequential sampler of discrete objects under an unnormalized target density.
Existing training objectives for GFlowNets are either local to states or transitions, or propagate a reward signal over an entire sampling trajectory.
Inspired by the TD($lambda$) algorithm in reinforcement learning, we introduce subtrajectory balance or SubTB($lambda$), a GFlowNet training objective that can learn from partial action subsequences of varying lengths.
arXiv Detail & Related papers (2022-09-26T15:44:24Z) - Subquadratic Overparameterization for Shallow Neural Networks [60.721751363271146]
We provide an analytical framework that allows us to adopt standard neural training strategies.
We achieve the desiderata viaak-Lojasiewicz, smoothness, and standard assumptions.
arXiv Detail & Related papers (2021-11-02T20:24:01Z) - Predicting Deep Neural Network Generalization with Perturbation Response
Curves [58.8755389068888]
We propose a new framework for evaluating the generalization capabilities of trained networks.
Specifically, we introduce two new measures for accurately predicting generalization gaps.
We attain better predictive scores than the current state-of-the-art measures on a majority of tasks in the Predicting Generalization in Deep Learning (PGDL) NeurIPS 2020 competition.
arXiv Detail & Related papers (2021-06-09T01:37:36Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks.
We analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations.
arXiv Detail & Related papers (2020-02-11T15:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.