論文の概要: High-Efficiency Neural Video Compression via Hierarchical Predictive Learning
- arxiv url: http://arxiv.org/abs/2410.02598v1
- Date: Thu, 3 Oct 2024 15:40:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 02:12:23.828001
- Title: High-Efficiency Neural Video Compression via Hierarchical Predictive Learning
- Title(参考訳): 階層型予測学習による高能率ニューラルビデオ圧縮
- Authors: Ming Lu, Zhihao Duan, Wuyang Cong, Dandan Ding, Fengqing Zhu, Zhan Ma,
- Abstract要約: 強化されたDeep Hierarchical Video Compression(DHVC 2.0)は、優れた圧縮性能と目覚ましい複雑さの効率を導入する。
階層的な予測符号化を使用して、各ビデオフレームをマルチスケール表現に変換する。
トランスミッションフレンドリーなプログレッシブデコーディングをサポートしており、パケットロスの存在下では特にネットワーク化されたビデオアプリケーションに有利である。
- 参考スコア(独自算出の注目度): 27.41398149573729
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The enhanced Deep Hierarchical Video Compression-DHVC 2.0-has been introduced. This single-model neural video codec operates across a broad range of bitrates, delivering not only superior compression performance to representative methods but also impressive complexity efficiency, enabling real-time processing with a significantly smaller memory footprint on standard GPUs. These remarkable advancements stem from the use of hierarchical predictive coding. Each video frame is uniformly transformed into multiscale representations through hierarchical variational autoencoders. For a specific scale's feature representation of a frame, its corresponding latent residual variables are generated by referencing lower-scale spatial features from the same frame and then conditionally entropy-encoded using a probabilistic model whose parameters are predicted using same-scale temporal reference from previous frames and lower-scale spatial reference of the current frame. This feature-space processing operates from the lowest to the highest scale of each frame, completely eliminating the need for the complexity-intensive motion estimation and compensation techniques that have been standard in video codecs for decades. The hierarchical approach facilitates parallel processing, accelerating both encoding and decoding, and supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss. Source codes will be made available.
- Abstract(参考訳): 拡張されたDeep Hierarchical Video Compression-DHVC 2.0が導入された。
このシングルモデルニューラルビデオコーデックは、幅広いビットレートで動作し、代表メソッドよりも優れた圧縮性能を提供するだけでなく、目覚ましい複雑さの効率も提供し、標準GPUのメモリフットプリントをはるかに小さくしたリアルタイム処理を可能にする。
これらの顕著な進歩は階層的な予測符号化の使用に起因している。
各ビデオフレームは、階層的変動オートエンコーダにより、一様にマルチスケール表現に変換される。
フレームの特定のスケールの特徴表現について、対応する潜在残差変数は、同一フレームから下位の空間的特徴を参照して生成し、そのパラメータが前フレームからの同スケールの時間的参照と現在のフレームの下位の空間的参照を用いて予測される確率モデルを用いて条件付きエントロピー符号化する。
この特徴空間処理は、各フレームの最低から最高スケールまで動作し、何十年もビデオコーデックで標準であった複雑さ集約的な動き推定と補償技術の必要性を完全に排除した。
階層的なアプローチは並列処理を促進し、符号化と復号の両方を高速化し、トランスミッションフレンドリーなプログレッシブデコーディングをサポートする。
ソースコードは利用可能になる。
関連論文リスト
- Accelerating Learned Video Compression via Low-Resolution Representation Learning [18.399027308582596]
低解像度表現学習に焦点を当てた学習ビデオ圧縮のための効率最適化フレームワークを提案する。
提案手法は,H.266参照ソフトウェアVTMの低遅延P構成と同等の性能を実現する。
論文 参考訳(メタデータ) (2024-07-23T12:02:57Z) - Boosting Neural Representations for Videos with a Conditional Decoder [28.073607937396552]
Inlicit Neural representations (INRs) は、ビデオストレージと処理において有望なアプローチとして登場した。
本稿では,現在の暗黙的ビデオ表現手法のための普遍的なブースティングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-28T08:32:19Z) - VNVC: A Versatile Neural Video Coding Framework for Efficient
Human-Machine Vision [59.632286735304156]
コード化された表現をピクセルに復号することなく直接拡張・解析することがより効率的である。
再構成と直接拡張/分析の両方をサポートするために,コンパクト表現の学習を目標とする汎用型ニューラルビデオ符号化(VNVC)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-19T03:04:57Z) - FFNeRV: Flow-Guided Frame-Wise Neural Representations for Videos [5.958701846880935]
ビデオ中のフレーム間の時間的冗長性を利用するために,フロー情報をフレームワイズ表現に組み込む新しい手法であるFFNeRVを提案する。
モデル圧縮技術により、FFNeRVは広く使われている標準ビデオコーデック(H.264とHEVC)より優れ、最先端のビデオ圧縮アルゴリズムと同等に動作する。
論文 参考訳(メタデータ) (2022-12-23T12:51:42Z) - A Coding Framework and Benchmark towards Low-Bitrate Video Understanding [63.05385140193666]
我々は,従来のコーデックとニューラルネットワーク(NN)の両方を活用する,従来型ニューラル混合符号化フレームワークを提案する。
このフレームワークは、動画の移動効率の良いセマンティック表現を確実に保持することで最適化される。
8つのデータセットに3つのダウンストリームタスクを備えた低ビットレートビデオ理解ベンチマークを構築し、このアプローチの顕著な優位性を実証した。
論文 参考訳(メタデータ) (2022-02-06T16:29:15Z) - Conditional Entropy Coding for Efficient Video Compression [82.35389813794372]
本稿では,フレーム間の条件エントロピーをモデル化することのみに焦点を当てた,非常にシンプルで効率的なビデオ圧縮フレームワークを提案する。
まず、画像遅延符号間のエントロピーをモデル化する単純なアーキテクチャが、他のニューラルビデオ圧縮やビデオコーデックと同等の競争力を持つことを示す。
次に、このアーキテクチャの上に新しい内部学習拡張を提案し、復号速度を抑えることなく10%の節約を実現した。
論文 参考訳(メタデータ) (2020-08-20T20:01:59Z) - Learning for Video Compression with Recurrent Auto-Encoder and Recurrent
Probability Model [164.7489982837475]
本稿では、リカレントオートエンコーダ(RAE)とリカレント確率モデル(RPM)を用いたリカレントラーニングビデオ圧縮(RLVC)手法を提案する。
RAEは、ビデオフレーム間の時間的相関を利用するために、エンコーダとデコーダの両方で繰り返しセルを使用する。
提案手法は,PSNRとMS-SSIMの両方の観点から,最先端の学習ビデオ圧縮性能を実現する。
論文 参考訳(メタデータ) (2020-06-24T08:46:33Z) - Variable Rate Video Compression using a Hybrid Recurrent Convolutional
Learning Framework [1.9290392443571382]
本稿では,予測自動符号化の概念に基づくハイブリッドビデオ圧縮フレームワークであるPredEncoderを提案する。
可変レートブロック符号化方式が論文で提案され,ビットレート比が著しく向上した。
論文 参考訳(メタデータ) (2020-04-08T20:49:25Z) - Content Adaptive and Error Propagation Aware Deep Video Compression [110.31693187153084]
本稿では,コンテンツ適応型・誤り伝搬対応型ビデオ圧縮システムを提案する。
本手法では, 複数フレームの圧縮性能を1フレームではなく複数フレームで考慮し, 共同学習手法を用いる。
従来の圧縮システムでは手作りのコーディングモードを使用する代わりに,オンラインエンコーダ更新方式をシステム内に設計する。
論文 参考訳(メタデータ) (2020-03-25T09:04:24Z) - An Emerging Coding Paradigm VCM: A Scalable Coding Approach Beyond
Feature and Signal [99.49099501559652]
Video Coding for Machine (VCM)は、視覚的特徴圧縮と古典的なビデオ符号化のギャップを埋めることを目的としている。
我々は,学習した動きパターンのガイダンスを用いて,映像フレームを再構成するために条件付き深層生成ネットワークを用いる。
予測モデルを介してスパース動作パターンを抽出することを学ぶことにより、特徴表現をエレガントに活用し、符号化されたフレームの外観を生成する。
論文 参考訳(メタデータ) (2020-01-09T14:18:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。