Ranking Perspective for Tree-based Methods with Applications to Symbolic Feature Selection
- URL: http://arxiv.org/abs/2410.02623v1
- Date: Thu, 3 Oct 2024 16:03:39 GMT
- Title: Ranking Perspective for Tree-based Methods with Applications to Symbolic Feature Selection
- Authors: Hengrui Luo, Meng Li,
- Abstract summary: Tree-based methods are powerful nonparametric techniques in statistics and machine learning.
Recent applications have revealed their surprising ability to distinguish transformations that remain obscure under current theoretical understanding.
This work provides a finite-sample analysis of tree-based methods from a ranking perspective.
- Score: 3.2964064859807496
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Tree-based methods are powerful nonparametric techniques in statistics and machine learning. However, their effectiveness, particularly in finite-sample settings, is not fully understood. Recent applications have revealed their surprising ability to distinguish transformations (which we call symbolic feature selection) that remain obscure under current theoretical understanding. This work provides a finite-sample analysis of tree-based methods from a ranking perspective. We link oracle partitions in tree methods to response rankings at local splits, offering new insights into their finite-sample behavior in regression and feature selection tasks. Building on this local ranking perspective, we extend our analysis in two ways: (i) We examine the global ranking performance of individual trees and ensembles, including Classification and Regression Trees (CART) and Bayesian Additive Regression Trees (BART), providing finite-sample oracle bounds, ranking consistency, and posterior contraction results. (ii) Inspired by the ranking perspective, we propose concordant divergence statistics $\mathcal{T}_0$ to evaluate symbolic feature mappings and establish their properties. Numerical experiments demonstrate the competitive performance of these statistics in symbolic feature selection tasks compared to existing methods.
Related papers
- Extending Explainable Ensemble Trees (E2Tree) to regression contexts [1.5186937600119894]
E2Tree is a novel methodology for explaining random forests.
It accounts for the effects of predictor variables on the response.
It also accounts for associations between the predictor variables through the computation and use of dissimilarity measures.
arXiv Detail & Related papers (2024-09-10T11:42:55Z) - Optimized Feature Generation for Tabular Data via LLMs with Decision Tree Reasoning [53.241569810013836]
We propose a novel framework that utilizes large language models (LLMs) to identify effective feature generation rules.
We use decision trees to convey this reasoning information, as they can be easily represented in natural language.
OCTree consistently enhances the performance of various prediction models across diverse benchmarks.
arXiv Detail & Related papers (2024-06-12T08:31:34Z) - Hierarchical clustering with dot products recovers hidden tree structure [53.68551192799585]
In this paper we offer a new perspective on the well established agglomerative clustering algorithm, focusing on recovery of hierarchical structure.
We recommend a simple variant of the standard algorithm, in which clusters are merged by maximum average dot product and not, for example, by minimum distance or within-cluster variance.
We demonstrate that the tree output by this algorithm provides a bona fide estimate of generative hierarchical structure in data, under a generic probabilistic graphical model.
arXiv Detail & Related papers (2023-05-24T11:05:12Z) - Unboxing Tree Ensembles for interpretability: a hierarchical
visualization tool and a multivariate optimal re-built tree [0.34530027457862006]
We develop an interpretable representation of a tree-ensemble model that can provide valuable insights into its behavior.
The proposed model is effective in yielding a shallow interpretable tree approxing the tree-ensemble decision function.
arXiv Detail & Related papers (2023-02-15T10:43:31Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
A corpus of metrics is designed for measuring the accuracy, robustness, and bounds of algorithms for learning with long-tailed distribution.
Based on our benchmarks, we re-evaluate the performance of existing methods on CIFAR10 and CIFAR100 datasets.
arXiv Detail & Related papers (2023-02-03T02:40:54Z) - A Mathematical Programming Approach to Optimal Classification Forests [1.0705399532413618]
We propose a novel mathematical optimization-based methodology in which a given number of trees are simultaneously constructed.
The classification rule is derived by assigning to each observation its most frequently predicted class among the trees in the forest.
We show that our proposed method has equal or superior performance compared with state-of-the-art tree-based classification methods.
arXiv Detail & Related papers (2022-11-18T20:33:08Z) - Individualized and Global Feature Attributions for Gradient Boosted
Trees in the Presence of $\ell_2$ Regularization [0.0]
We propose Prediction Decomposition (PreDecomp), a novel individualized feature attribution for boosted trees when they are trained with $ell$ regularization.
We also propose TreeInner, a family of debiased global feature attributions defined in terms of the inner product between any individualized feature attribution and labels on out-sample data for each tree.
arXiv Detail & Related papers (2022-11-08T17:56:22Z) - Intersection Regularization for Extracting Semantic Attributes [72.53481390411173]
We consider the problem of supervised classification, such that the features that the network extracts match an unseen set of semantic attributes.
For example, when learning to classify images of birds into species, we would like to observe the emergence of features that zoologists use to classify birds.
We propose training a neural network with discrete top-level activations, which is followed by a multi-layered perceptron (MLP) and a parallel decision tree.
arXiv Detail & Related papers (2021-03-22T14:32:44Z) - Measure Inducing Classification and Regression Trees for Functional Data [0.0]
We propose a tree-based algorithm for classification and regression problems in the context of functional data analysis.
This is achieved by learning a weighted functional $L2$ space by means of constrained convex optimization.
arXiv Detail & Related papers (2020-10-30T18:49:53Z) - Infinite Feature Selection: A Graph-based Feature Filtering Approach [78.63188057505012]
We propose a filtering feature selection framework that considers subsets of features as paths in a graph.
Going to infinite allows to constrain the computational complexity of the selection process.
We show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori.
arXiv Detail & Related papers (2020-06-15T07:20:40Z) - Parameterizing Branch-and-Bound Search Trees to Learn Branching Policies [76.83991682238666]
Branch and Bound (B&B) is the exact tree search method typically used to solve Mixed-Integer Linear Programming problems (MILPs)
We propose a novel imitation learning framework, and introduce new input features and architectures to represent branching.
arXiv Detail & Related papers (2020-02-12T17:43:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.