Improved proteasomal cleavage prediction with positive-unlabeled
learning
- URL: http://arxiv.org/abs/2209.07527v1
- Date: Wed, 14 Sep 2022 11:29:15 GMT
- Title: Improved proteasomal cleavage prediction with positive-unlabeled
learning
- Authors: Emilio Dorigatti, Bernd Bischl, Benjamin Schubert
- Abstract summary: We present a new predictor trained with an expanded dataset and the solid theoretical spectrometry of positive-unlabeled learning.
The improved predictive capabilities will in turn enable more precise vaccine development.
- Score: 0.9023847175654603
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Accurate in silico modeling of the antigen processing pathway is crucial to
enable personalized epitope vaccine design for cancer. An important step of
such pathway is the degradation of the vaccine into smaller peptides by the
proteasome, some of which are going to be presented to T cells by the MHC
complex. While predicting MHC-peptide presentation has received a lot of
attention recently, proteasomal cleavage prediction remains a relatively
unexplored area in light of recent advances in high-throughput mass
spectrometry-based MHC ligandomics. Moreover, as such experimental techniques
do not allow to identify regions that cannot be cleaved, the latest predictors
generate synthetic negative samples and treat them as true negatives when
training, even though some of them could actually be positives. In this work,
we thus present a new predictor trained with an expanded dataset and the solid
theoretical underpinning of positive-unlabeled learning, achieving a new
state-of-the-art in proteasomal cleavage prediction. The improved predictive
capabilities will in turn enable more precise vaccine development improving the
efficacy of epitope-based vaccines. Code and pretrained models are available at
https://github.com/SchubertLab/proteasomal-cleavage-puupl.
Related papers
- Immunogenicity Prediction with Dual Attention Enables Vaccine Target Selection [6.949493332885247]
ProVaccine is a novel deep learning solution that integrates latent vector representations of protein sequences and structures.
We also compile the most comprehensive immunogenicity dataset to date, encompassing over 9,500 antigen sequences, structures, and immunogenicity labels from bacteria, viruses, and tumors.
Our work provides an effective tool for vaccine design and sets valuable benchmarks for future research.
arXiv Detail & Related papers (2024-10-03T16:33:35Z) - Opponent Shaping for Antibody Development [49.26728828005039]
Anti-viral therapies are typically designed to target only the current strains of a virus.
therapy-induced selective pressures act on viruses to drive the emergence of mutated strains, against which initial therapies have reduced efficacy.
We build on a computational model of binding between antibodies and viral antigens to implement a genetic simulation of viral evolutionary escape.
arXiv Detail & Related papers (2024-09-16T14:56:27Z) - NovoBench: Benchmarking Deep Learning-based De Novo Peptide Sequencing Methods in Proteomics [58.03989832372747]
We present the first unified benchmark NovoBench for emphde novo peptide sequencing.
It comprises diverse mass spectrum data, integrated models, and comprehensive evaluation metrics.
Recent methods, including DeepNovo, PointNovo, Casanovo, InstaNovo, AdaNovo and $pi$-HelixNovo are integrated into our framework.
arXiv Detail & Related papers (2024-06-16T08:23:21Z) - BeeTLe: A Framework for Linear B-Cell Epitope Prediction and
Classification [0.43512163406551996]
This paper presents a new deep learning-based framework for linear B-cell prediction as well as antibody type-specific classification.
We propose an amino acid encoding method based on eigen decomposition to help the model learn the representations of antibodies.
Experimental results on data curated from the largest public database demonstrate the validity of the proposed methods.
arXiv Detail & Related papers (2023-09-05T09:18:29Z) - AI driven B-cell Immunotherapy Design [0.0]
The effectiveness of antigen neutralisation and elimination hinges upon the strength, sensitivity, and specificity of the paratope-epitope interaction.
In recent years, artificial intelligence and machine learning methods have made significant strides, revolutionising the prediction of protein structures and their complexes.
This review focuses on the progress of machine learning-based tools and their frameworks in the domain of B-cell immunotherapy design.
arXiv Detail & Related papers (2023-09-03T09:14:10Z) - Efficient Prediction of Peptide Self-assembly through Sequential and
Graphical Encoding [57.89530563948755]
This work provides a benchmark analysis of peptide encoding with advanced deep learning models.
It serves as a guide for a wide range of peptide-related predictions such as isoelectric points, hydration free energy, etc.
arXiv Detail & Related papers (2023-07-17T00:43:33Z) - Dense Feature Memory Augmented Transformers for COVID-19 Vaccination
Search Classification [60.49594822215981]
This paper presents a classification model for detecting COVID-19 vaccination related search queries.
We propose a novel approach of considering dense features as memory tokens that the model can attend to.
We show that this new modeling approach enables a significant improvement to the Vaccine Search Insights (VSI) task.
arXiv Detail & Related papers (2022-12-16T13:57:41Z) - xTrimoABFold: De novo Antibody Structure Prediction without MSA [77.47606749555686]
We develop a novel model named xTrimoABFold to predict antibody structure from antibody sequence.
The model was trained end-to-end on the antibody structures in PDB by minimizing the ensemble loss of domain-specific focal loss on CDR and the frame-aligned point loss.
arXiv Detail & Related papers (2022-11-30T09:26:08Z) - Neural message passing for joint paratope-epitope prediction [0.0]
Antibodies are proteins in the immune system which bind to antigens to detect and neutralise them.
Prediction of binding sites in an antibody-antigen interaction are known as the paratope and, respectively, and are key to vaccine and synthetic antibody development.
arXiv Detail & Related papers (2021-05-31T16:37:55Z) - Uncertainty Estimation in SARS-CoV-2 B-cell Epitope Prediction for
Vaccine Development [0.36130723421895944]
Knowing how much confidence there is in a prediction is also essential for gaining clinicians' trust in the technology.
Knowing how much confidence there is in a prediction is also essential for gaining clinicians' trust in the technology.
arXiv Detail & Related papers (2021-03-20T17:10:49Z) - Accelerating Antimicrobial Discovery with Controllable Deep Generative
Models and Molecular Dynamics [109.70543391923344]
CLaSS (Controlled Latent attribute Space Sampling) is an efficient computational method for attribute-controlled generation of molecules.
We screen the generated molecules for additional key attributes by using deep learning classifiers in conjunction with novel features derived from atomistic simulations.
The proposed approach is demonstrated for designing non-toxic antimicrobial peptides (AMPs) with strong broad-spectrum potency.
arXiv Detail & Related papers (2020-05-22T15:57:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.