論文の概要: HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly
- arxiv url: http://arxiv.org/abs/2410.02694v1
- Date: Thu, 10 Oct 2024 15:31:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-04 01:32:59.524023
- Title: HELMET: How to Evaluate Long-Context Language Models Effectively and Thoroughly
- Title(参考訳): HELMET: 長期言語モデルを効果的かつ正確に評価する方法
- Authors: Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izasak, Moshe Wasserblat, Danqi Chen,
- Abstract要約: HELMETは7つの多様なアプリケーション中心のカテゴリを包含する総合ベンチマークである。
NIAHのような合成タスクは、下流のパフォーマンスの予測に適していないことが分かりました。
ほとんどのLCLMは完全なNIAHスコアを達成しているが、タスクがフルコンテキスト推論を必要とする場合、オープンソースモデルはクローズドなスコアよりも大幅に遅れている。
- 参考スコア(独自算出の注目度): 30.95414104951757
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There have been many benchmarks for evaluating long-context language models (LCLMs), but developers often rely on synthetic tasks like needle-in-a-haystack (NIAH) or arbitrary subsets of tasks. It remains unclear whether they translate to the diverse downstream applications of LCLMs, and the inconsistency further complicates model comparison. We investigate the underlying reasons behind current practices and find that existing benchmarks often provide noisy signals due to low coverage of applications, insufficient lengths, unreliable metrics, and incompatibility with base models. In this work, we present HELMET (How to Evaluate Long-context Models Effectively and Thoroughly), a comprehensive benchmark encompassing seven diverse, application-centric categories. We also address many issues in previous benchmarks by adding controllable lengths up to 128k tokens, model-based evaluation for reliable metrics, and few-shot prompting for robustly evaluating base models. Consequently, we demonstrate that HELMET offers more reliable and consistent rankings of frontier LCLMs. Through a comprehensive study of 51 LCLMs, we find that (1) synthetic tasks like NIAH are not good predictors of downstream performance; (2) the diverse categories in HELMET exhibit distinct trends and low correlation with each other; and (3) while most LCLMs achieve perfect NIAH scores, open-source models significantly lag behind closed ones when the task requires full-context reasoning or following complex instructions -- the gap widens with increased lengths. Finally, we recommend using our RAG tasks for fast model development, as they are easy to run and more predictive of other downstream performance; ultimately, we advocate for a holistic evaluation across diverse tasks.
- Abstract(参考訳): 長いコンテキスト言語モデル(LCLM)の評価には多くのベンチマークがあるが、開発者は多くの場合、ニードル・イン・ア・ヘイスタック(NIAH)やタスクの任意のサブセットのような合成タスクに依存している。
LCLMの様々なダウンストリームアプリケーションに翻訳するかどうかは不明であり、矛盾はモデルの比較をさらに複雑にしている。
既存のベンチマークは、アプリケーションのカバレッジが低く、長さが不十分で、信頼性の低いメトリクスがあり、ベースモデルと互換性がないため、ノイズの多い信号を提供することが多い。
本研究は,アプリケーション中心の7つのカテゴリを網羅した総合ベンチマークであるHELMET(How to Evaluate Long-context Models Effectively and Thoroughly)を提案する。
従来のベンチマークでは,最大128万トークンのコントロール可能な長さの追加や,信頼性の高いメトリクスに対するモデルベース評価,ベースモデルを堅牢に評価するためのショットプロンプトなど,多くの問題にも対処しています。
その結果,HELMETはフロンティアLCLMの信頼性が高く一貫したランキングを提供することを示した。
51個のLCLMの総合的な研究を通して,(1) NIAHのような合成タスクは下流性能の予測に適さない,(2) HELMETの多様なカテゴリは異なる傾向と相関が低い,(3) ほとんどのLCLMは完全なNIAHスコアを達成する一方で, タスクが完全コンテキスト推論や複雑な指示に従う場合, オープンソースモデルはクローズドタスクよりも著しく遅れている,という結果を得た。
最後に、我々はRAGタスクを高速なモデル開発に使用することを推奨します。
関連論文リスト
- MM-R$^3$: On (In-)Consistency of Multi-modal Large Language Models (MLLMs) [26.475993408532304]
本研究では,MLLMモデルが意味論的に類似したクエリに対して,意味論的に類似あるいは同一の応答を生成する能力について検討する。
本稿では,SoTA MLLMの一貫性と精度の観点から,MM-R$3$ベンチマークを提案する。
我々の分析では、一貫性が必ずしも精度と一致していないことを示し、高い精度のモデルが必ずしも一致しているとは限らないことを示し、その逆も示している。
論文 参考訳(メタデータ) (2024-10-07T06:36:55Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
長いコンテキストモデリング能力は広く注目を集めており、超コンテキストウィンドウを持つLarge Language Models (LLMs) の出現につながっている。
拡張多文書質問応答(QA)によって現実的なシナリオに整合する新しい長文ベンチマークであるLoongを提案する。
Loong氏は、Spotlight Locating, Comparison, Clustering, Chain of Reasoningという、コンテキスト長の4つのタスクを紹介している。
論文 参考訳(メタデータ) (2024-06-25T09:42:56Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - Cleared for Takeoff? Compositional & Conditional Reasoning may be the Achilles Heel to (Flight-Booking) Language Agents [12.391420075730242]
我々は,人間の認知の2つの基礎となる構成的および条件的推論を研究し,グラウンドココアを紹介した。
私たちのタスクは、詳細なユーザの好みと、複数の選択形式で提示される利用可能なフライトオプションを整合させることです。
GPT-4 Turboは, 先進的なプロンプト技術にもかかわらず精度が67%を超えなかった。
論文 参考訳(メタデータ) (2024-04-05T17:36:26Z) - GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data [3.08543976986593]
MLLM(Multimodal Large Language Models)は通常、高価な注釈付きマルチモーダルベンチマークを用いて評価される。
本稿では,新しいアノテーションのない評価手法であるGenCeptionの概要と検証を行う。
モダリティ間のセマンティック・コヒーレンスを測定するために一元データのみを必要とし、逆にMLLMの幻覚傾向を評価する。
論文 参考訳(メタデータ) (2024-02-22T21:22:04Z) - Benchmark Self-Evolving: A Multi-Agent Framework for Dynamic LLM
Evaluation [51.99752147380505]
本稿では,大規模言語モデル(LLM)を動的に評価するベンチマーク自己進化フレームワークを提案する。
マルチエージェントシステムを用いて、元のインスタンスのコンテキストや質問を操作し、信頼性の高い新しいインスタンスをフレーミングする。
我々のフレームワークは、異なるモデル間の性能の相違を拡大し、様々なタスクで同じモデル内で性能の相違を拡大します。
論文 参考訳(メタデータ) (2024-02-18T03:40:06Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
抽象的な要約のための自動評価器として,大規模言語モデル(LLM)の安定性と信頼性について検討する。
また、ChatGPTとGPT-4は、一般的に使われている自動測定値よりも優れていますが、人間の代替品として準備ができていません。
論文 参考訳(メタデータ) (2023-05-22T14:58:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。