論文の概要: GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data
- arxiv url: http://arxiv.org/abs/2402.14973v3
- Date: Tue, 23 Jul 2024 13:54:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 23:03:22.913725
- Title: GenCeption: Evaluate Multimodal LLMs with Unlabeled Unimodal Data
- Title(参考訳): GenCeption:Unlabeled Unimodal Dataを用いたマルチモーダルLCMの評価
- Authors: Lele Cao, Valentin Buchner, Zineb Senane, Fangkai Yang,
- Abstract要約: MLLM(Multimodal Large Language Models)は通常、高価な注釈付きマルチモーダルベンチマークを用いて評価される。
本稿では,新しいアノテーションのない評価手法であるGenCeptionの概要と検証を行う。
モダリティ間のセマンティック・コヒーレンスを測定するために一元データのみを必要とし、逆にMLLMの幻覚傾向を評価する。
- 参考スコア(独自算出の注目度): 3.08543976986593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) are typically assessed using expensive annotated multimodal benchmarks, which often lag behind the rapidly evolving demands of MLLM evaluation. This paper outlines and validates GenCeption, a novel, annotation-free evaluation method that requires only unimodal data to measure inter-modality semantic coherence and inversely assesses MLLMs' tendency to hallucinate. This approach eliminates the need for costly data annotation, minimizes the risk of training data contamination, results in slower benchmark saturation, and avoids the illusion of emerging abilities. Inspired by the DrawCeption game, GenCeption begins with a non-textual sample and proceeds through iterative description and generation steps. The semantic drift across iterations is quantified using the GC@T metric. Based on the GenCeption method, we establish the MMECeption benchmark for evaluating Vision LLMs (VLLMs), and compare performance of several popular VLLMs and human annotators. Our empirical results validate GenCeption's effectiveness, demonstrating strong correlations with established VLLM benchmarks. VLLMs still significantly lack behind human performance and struggle especially with text-intensive tasks.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)は通常、高価な注釈付きマルチモーダルベンチマークを用いて評価される。
本稿では,モダリティ間のセマンティックコヒーレンスを測定するために,一助データのみを必要とする新しいアノテーションなし評価手法であるGenCeptionの概要と検証を行い,MLLMの幻覚傾向を逆評価する。
このアプローチは、コストのかかるデータアノテーションの必要性を排除し、トレーニングデータ汚染のリスクを最小限にし、ベンチマークの飽和を遅くし、出現する能力の錯覚を避ける。
DrawCeptionゲームにインスパイアされたGenCeptionは、テキスト以外のサンプルから始まり、反復的な記述と生成ステップを進む。
反復のセマンティックドリフトはGC@Tメトリックを使用して定量化される。
GenCeption法に基づいて、視覚LLM(VLLM)の評価のためのMMECeptionベンチマークを確立し、人気のあるVLLMと人間のアノテーションの性能を比較した。
我々はGenCeptionの有効性を実証し,既存のVLLMベンチマークと強い相関関係を示した。
VLLMは、特にテキスト集約的なタスクにおいて、人間のパフォーマンスと苦労の裏側には、依然として著しく欠落している。
関連論文リスト
- SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - The Good, The Bad, and The Greedy: Evaluation of LLMs Should Not Ignore Non-Determinism [39.392450788666814]
大規模言語モデル(LLM)の現在の評価は、しばしば非決定論を見落としている。
greedyデコーディングは一般的に、最も評価されたタスクのサンプリング方法よりも優れています。
より小型のLPMはGPT-4-Turboのような大型のモデルと一致するか、超えることができる。
論文 参考訳(メタデータ) (2024-07-15T06:12:17Z) - FineSurE: Fine-grained Summarization Evaluation using LLMs [22.62504593575933]
FineSurEは,大規模言語モデル(LLM)を用いた要約タスクに適した,きめ細かい評価器である。
また、忠実さに加えて完全性と簡潔さの基準を採用し、多次元評価を可能にしている。
論文 参考訳(メタデータ) (2024-07-01T02:20:28Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
本稿では,適応推論グラフ展開(DARG)によるLCMの動的評価を導入し,複雑性と多様性を制御した現在のベンチマークを動的に拡張する。
具体的には、まず現在のベンチマークでデータポイントの推論グラフを抽出し、それから推論グラフを摂動させて新しいテストデータを生成する。
このような新しく生成されたテストサンプルは、元のベンチマークと同様の言語的多様性を維持しながら、複雑さのレベルが異なる可能性がある。
論文 参考訳(メタデータ) (2024-06-25T04:27:53Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEvalは、評価のためにLarge Language Models(LLM)表現の投影を利用するメトリクスである。
我々の研究は、LLM表現に埋め込まれたテキスト品質に関する情報の豊かさを強調し、新しいメトリクスの開発のための洞察を提供する。
論文 参考訳(メタデータ) (2024-04-30T13:50:55Z) - MLLM-Bench: Evaluating Multimodal LLMs with Per-sample Criteria [49.500322937449326]
MLLM(Multimodal large language model)は、AIアプリケーションの範囲を広げている。
既存のMLLMの自動評価手法は主にユーザエクスペリエンスを考慮せずにクエリを評価する場合に限られている。
本稿では,MLLM を判断基準として評価する MLLM の新しい評価パラダイムを提案する。
論文 参考訳(メタデータ) (2023-11-23T12:04:25Z) - An Examination of the Compositionality of Large Generative Vision-Language Models [7.639748270719836]
GVLM(Generative Vision-Language Models)はマルチモーダル・インストラクション・チューニングによって構築されている。
本稿では,GVLMの構成性を評価するための評価指標(VisualGPTScoreなど)と現在のベンチマークについて検討する。
我々は,GVLMの言語的能力を利用して,現在のベンチマークにおける構文バイアスを同定する。
論文 参考訳(メタデータ) (2023-08-21T06:50:29Z) - LLMs as Factual Reasoners: Insights from Existing Benchmarks and Beyond [135.8013388183257]
そこで我々は,SummEditsと呼ばれる10ドメインのベンチマークで不整合検出ベンチマークを作成し,実装する新しいプロトコルを提案する。
ほとんどのLLMはSummEditsで苦労しており、パフォーマンスはランダムに近い。
最も優れたモデルであるGPT-4は、推定された人間のパフォーマンスよりも8%低い。
論文 参考訳(メタデータ) (2023-05-23T21:50:06Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。