Measurements with Noise: Bayesian Optimization for Co-optimizing Noise and Property Discovery in Automated Experiments
- URL: http://arxiv.org/abs/2410.02717v1
- Date: Thu, 3 Oct 2024 17:38:43 GMT
- Title: Measurements with Noise: Bayesian Optimization for Co-optimizing Noise and Property Discovery in Automated Experiments
- Authors: Boris N. Slautin, Yu Liu, Jan Dec, Vladimir V. Shvartsman, Doru C. Lupascu, Maxim Ziatdinov, Sergei V. Kalinin,
- Abstract summary: We have developed a Bayesian optimization (BO) workflow that integrates intra-step noise optimization into automated experimental cycles.
Traditional BO approaches in automated experiments focus on optimizing experimental trajectories but often overlook the impact of measurement noise on data quality and cost.
Two approaches are explored: a reward-driven noise optimization and a double-optimization function.
- Score: 2.6120363620274816
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We have developed a Bayesian optimization (BO) workflow that integrates intra-step noise optimization into automated experimental cycles. Traditional BO approaches in automated experiments focus on optimizing experimental trajectories but often overlook the impact of measurement noise on data quality and cost. Our proposed framework simultaneously optimizes both the target property and the associated measurement noise by introducing time as an additional input parameter, thereby balancing the signal-to-noise ratio and experimental duration. Two approaches are explored: a reward-driven noise optimization and a double-optimization acquisition function, both enhancing the efficiency of automated workflows by considering noise and cost within the optimization process. We validate our method through simulations and real-world experiments using Piezoresponse Force Microscopy (PFM), demonstrating the successful optimization of measurement duration and property exploration. Our approach offers a scalable solution for optimizing multiple variables in automated experimental workflows, improving data quality, and reducing resource expenditure in materials science and beyond.
Related papers
- Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.
In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.
DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - ROPO: Robust Preference Optimization for Large Language Models [59.10763211091664]
We propose an iterative alignment approach that integrates noise-tolerance and filtering of noisy samples without the aid of external models.
Experiments on three widely-used datasets with Mistral-7B and Llama-2-7B demonstrate that ROPO significantly outperforms existing preference alignment methods.
arXiv Detail & Related papers (2024-04-05T13:58:51Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - A Data-Driven Evolutionary Transfer Optimization for Expensive Problems
in Dynamic Environments [9.098403098464704]
Data-driven, a.k.a. surrogate-assisted, evolutionary optimization has been recognized as an effective approach for tackling expensive black-box optimization problems.
This paper proposes a simple but effective transfer learning framework to empower data-driven evolutionary optimization to solve dynamic optimization problems.
Experiments on synthetic benchmark test problems and a real-world case study demonstrate the effectiveness of our proposed algorithm.
arXiv Detail & Related papers (2022-11-05T11:19:50Z) - Neighbor Regularized Bayesian Optimization for Hyperparameter
Optimization [12.544312247050236]
We propose a novel BO algorithm called Neighbor Regularized Bayesian Optimization (NRBO) to solve the problem.
We first propose a neighbor-based regularization to smooth each sample observation, which could reduce the observation noise efficiently without any extra training cost.
We conduct experiments on the bayesmark benchmark and important computer vision benchmarks such as ImageNet and COCO.
arXiv Detail & Related papers (2022-10-07T12:08:01Z) - Performance comparison of optimization methods on variational quantum
algorithms [2.690135599539986]
Variational quantum algorithms (VQAs) offer a promising path towards using near-term quantum hardware for applications in academic and industrial research.
We study the performance of four commonly used gradient-free optimization methods: SLSQP, COBYLA, CMA-ES, and SPSA.
arXiv Detail & Related papers (2021-11-26T12:13:20Z) - Amortized Auto-Tuning: Cost-Efficient Transfer Optimization for
Hyperparameter Recommendation [83.85021205445662]
We propose an instantiation--amortized auto-tuning (AT2) to speed up tuning of machine learning models.
We conduct a thorough analysis of the multi-task multi-fidelity Bayesian optimization framework, which leads to the best instantiation--amortized auto-tuning (AT2)
arXiv Detail & Related papers (2021-06-17T00:01:18Z) - Reactive Sample Size for Heuristic Search in Simulation-based
Optimization [2.9005223064604073]
This paper presents a novel reactive sample size algorithm based on parametric tests and indifference-zone selection.
Tests employ benchmark functions extended with artificial levels of noise and a simulation-based optimization tool for hotel revenue management.
arXiv Detail & Related papers (2020-05-25T14:38:55Z) - Bilevel Optimization for Differentially Private Optimization in Energy
Systems [53.806512366696275]
This paper studies how to apply differential privacy to constrained optimization problems whose inputs are sensitive.
The paper shows that, under a natural assumption, a bilevel model can be solved efficiently for large-scale nonlinear optimization problems.
arXiv Detail & Related papers (2020-01-26T20:15:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.