論文の概要: Large Language Models as Markov Chains
- arxiv url: http://arxiv.org/abs/2410.02724v2
- Date: Sun, 02 Feb 2025 15:57:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-04 16:08:18.394052
- Title: Large Language Models as Markov Chains
- Title(参考訳): マルコフチェインとしての大規模言語モデル
- Authors: Oussama Zekri, Ambroise Odonnat, Abdelhakim Benechehab, Linus Bleistein, Nicolas Boullé, Ievgen Redko,
- Abstract要約: 有限状態空間上で定義された自己回帰変換言語モデルとマルコフ連鎖の同値性を描く。
以上の結果とLLMで観察された病理行動との関連性を検討した。
最新のLlamaとGemmaのモデル群による実験は、我々の理論が実際にそれらの振る舞いを正しく捉えていることを示している。
- 参考スコア(独自算出の注目度): 7.078696932669912
- License:
- Abstract: Large language models (LLMs) are remarkably efficient across a wide range of natural language processing tasks and well beyond them. However, a comprehensive theoretical analysis of the LLMs' generalization capabilities remains elusive. In our paper, we approach this task by drawing an equivalence between autoregressive transformer-based language models and Markov chains defined on a finite state space. This allows us to study the multi-step inference mechanism of LLMs from first principles. We relate the obtained results to the pathological behavior observed with LLMs such as repetitions and incoherent replies with high temperature. Finally, we leverage the proposed formalization to derive pre-training and in-context learning generalization bounds for LLMs under realistic data and model assumptions. Experiments with the most recent Llama and Gemma herds of models show that our theory correctly captures their behavior in practice.
- Abstract(参考訳): 大規模言語モデル(LLM)は、広範囲の自然言語処理タスクやその先で非常に効率的である。
しかし、LLMの一般化能力に関する包括的な理論的分析は、いまだ解明されていない。
本稿では, 自己回帰変換言語モデルと有限状態空間上で定義されたマルコフ連鎖の同値性を引き出すことにより, この課題にアプローチする。
これにより、第一原理からLLMの多段階推論機構を研究することができる。
以上の結果から, 繰り返しや不整合反応などのLLMで観察された病態挙動を高温で解析した。
最後に、提案した形式化を利用して、現実的なデータとモデル仮定の下で、LLMに対する事前学習および文脈内学習の一般化境界を導出する。
最新のLlamaとGemmaのモデル群による実験は、我々の理論が実際にそれらの振る舞いを正しく捉えていることを示している。
関連論文リスト
- Zero-shot Model-based Reinforcement Learning using Large Language Models [12.930241182192988]
本稿では,マルコフ決定過程の動的状態を予測するために,事前学習した大規模言語モデルをどのように活用することができるかを検討する。
本稿では,モデルに基づく政策評価とデータ強化型オフ政治強化学習という2つの強化学習環境における概念実証の応用について述べる。
論文 参考訳(メタデータ) (2024-10-15T15:46:53Z) - Inductive Learning of Logical Theories with LLMs: An Expressivity-Graded Analysis [9.865771016218549]
本研究は,Large Language Models(LLM)の機能と限界を分析するための,新しい体系的方法論を提案する。
この分析は、LLM性能に関する特定の推論課題の定量化を可能にする、複雑性グレードのw.r.t.ルール依存構造である。
論文 参考訳(メタデータ) (2024-08-15T16:41:00Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - PoLLMgraph: Unraveling Hallucinations in Large Language Models via State Transition Dynamics [51.17512229589]
PoLLMgraphは、大規模言語モデルのためのモデルベースのホワイトボックス検出および予測手法である。
LLMの内部状態遷移ダイナミクスを解析することにより,幻覚を効果的に検出できることを示す。
我々の研究は、LLMのモデルベースのホワイトボックス分析の新しい手法を開拓し、LLMの振る舞いの複雑なダイナミクスをさらに探求し、理解し、洗練する研究コミュニティを動機付けている。
論文 参考訳(メタデータ) (2024-04-06T20:02:20Z) - Unveiling the Generalization Power of Fine-Tuned Large Language Models [81.70754292058258]
大規模言語モデル(LLM)に固有の内在的一般化能力に微調整が及ぼす影響について検討する。
本研究の主目的は、生成タスクと分類タスクを微調整したモデルが、異なる領域やタスクに一般化する際に異なる振る舞いを示すことである。
生成タスクの微調整中にコンテキスト内学習戦略を統合することで、モデルの一般化能力を高めることができる。
論文 参考訳(メタデータ) (2024-03-14T08:18:59Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
大規模言語モデル(LLM)から生成されたテキストの真偽を特徴付ける方法と予測法について検討する。
モデルアクティベーションの局所固有次元 (LID) を用いて, 内部アクティベーションを調査し, LLMの真偽を定量化する。
論文 参考訳(メタデータ) (2024-02-28T04:56:21Z) - Sparsity-Guided Holistic Explanation for LLMs with Interpretable
Inference-Time Intervention [53.896974148579346]
大規模言語モデル(LLM)は、様々な自然言語処理領域において前例のないブレークスルーを達成した。
LLMの謎的なブラックボックスの性質は、透過的で説明可能なアプリケーションを妨げる、解釈可能性にとって重要な課題である。
本稿では,LLMの全体的解釈を提供することを目的として,スポーシティ誘導技術に係わる新しい方法論を提案する。
論文 参考訳(メタデータ) (2023-12-22T19:55:58Z) - Large Language Models Are Latent Variable Models: Explaining and Finding
Good Demonstrations for In-Context Learning [104.58874584354787]
近年,事前学習型大規模言語モデル (LLM) は,インコンテキスト学習(in-context learning)として知られる推論時少数ショット学習能力を実現する上で,顕著な効率性を示している。
本研究では,現実のLLMを潜在変数モデルとみなし,ベイズレンズによる文脈内学習現象を考察することを目的とする。
論文 参考訳(メタデータ) (2023-01-27T18:59:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。