Pseudoentanglement from tensor networks
- URL: http://arxiv.org/abs/2410.02758v2
- Date: Wed, 16 Oct 2024 19:42:29 GMT
- Title: Pseudoentanglement from tensor networks
- Authors: Zihan Cheng, Xiaozhou Feng, Matteo Ippoliti,
- Abstract summary: Pseudoentangled states are defined by their ability to hide their entanglement structure.
We introduce new constructions of pseudoentangled states based on (pseudo)random tensor networks.
A notable application of this result is the construction of pseudoentangled holographic' states whose entanglement entropy obeys a Ryu-Takayanagi minimum-cut' formula.
- Score: 0.029541734875307393
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pseudoentangled states are defined by their ability to hide their entanglement structure: they are indistinguishable from random states to any observer with polynomial resources, yet can have much less entanglement than random states. Existing constructions of pseudoentanglement based on phase- and/or subset-states are limited in the entanglement structures they can hide: e.g., the states may have low entanglement on a single cut, on all cuts at once, or on local cuts in one dimension. Here we introduce new constructions of pseudoentangled states based on (pseudo)random tensor networks that affords much more flexibility in the achievable entanglement structures. We illustrate our construction with the simplest example of a matrix product state, realizable as a staircase circuit of pseudorandom unitary gates, which exhibits pseudo-area-law scaling of entanglement in one dimension. We then generalize our construction to arbitrary tensor network structures that admit an isometric realization. A notable application of this result is the construction of pseudoentangled `holographic' states whose entanglement entropy obeys a Ryu-Takayanagi `minimum-cut' formula, answering a question posed in [Aaronson et al., arXiv:2211.00747].
Related papers
- Geometry of degenerate quantum states, configurations of $m$-planes and invariants on complex Grassmannians [55.2480439325792]
We show how to reduce the geometry of degenerate states to the non-abelian connection $A$.
We find independent invariants associated with each triple of subspaces.
Some of them generalize the Berry-Pancharatnam phase, and some do not have analogues for 1-dimensional subspaces.
arXiv Detail & Related papers (2024-04-04T06:39:28Z) - Pseudorandom and Pseudoentangled States from Subset States [49.74460522523316]
A subset state with respect to $S$, a subset of the computational basis, is [ frac1sqrt|S|sum_iin S |irangle.
We show that for any fixed subset size $|S|=s$ such that $s = 2n/omega(mathrmpoly(n))$ and $s=omega(mathrmpoly(n))$, a random subset state is information-theoretically indistinguishable from a Haar random state even provided
arXiv Detail & Related papers (2023-12-23T15:52:46Z) - Stacked tree construction for free-fermion projected entangled pair
states [0.6144680854063939]
We propose a divide-and-conquer approach to construct a PEPS representation for free-fermion states admitting descriptions in terms of filling exponentially localized Wannier functions.
We demonstrate our construction for states in one and two dimensions, including the ground state of an obstructed atomic insulator on the square lattice.
arXiv Detail & Related papers (2023-08-18T08:13:35Z) - Quantum state complexity meets many-body scars [0.0]
Scar eigenstates in a many-body system refer to a small subset of non-thermal finite energy density eigenstates embedded into an otherwise thermal spectrum.
We probe these small sets of special eigenstates starting from particular initial states by computing the spread complexity associated to time evolution of the PXP hamiltonian.
arXiv Detail & Related papers (2023-05-16T18:10:46Z) - Quantum Pseudoentanglement [4.3053817709507]
Entanglement is a quantum resource, in some ways analogous to randomness in classical computation.
We give a construction of pseudoentangled states with entanglement entropy arbitrarily close to $log n$ across every cut.
We discuss applications of this result to Matrix Product State testing, entanglement distillation, and the complexity of the AdS/CFT correspondence.
arXiv Detail & Related papers (2022-11-01T21:04:49Z) - Growing Schr\"odinger's cat states by local unitary time evolution of
product states [0.0]
We show that, typically, a macroscopically-entangled state naturally grows after a single projective measurement of just one spin in the trivial eigenstate.
We identify a condition under which what is growing is a "Schr"odinger's cat state"
arXiv Detail & Related papers (2022-10-27T16:21:28Z) - Implications of sparsity and high triangle density for graph
representation learning [67.98498239263549]
Recent work has shown that sparse graphs containing many triangles cannot be reproduced using a finite-dimensional representation of the nodes.
Here, we show that such graphs can be reproduced using an infinite-dimensional inner product model, where the node representations lie on a low-dimensional manifold.
arXiv Detail & Related papers (2022-10-27T09:15:15Z) - Pseudo standard entanglement structure cannot be distinguished from
standard entanglement structure [61.12008553173672]
An experimental verification of the maximally entangled state does not guarantee that the state is exactly the same as the maximally entangled state.
In our setting, any maximally entangled state can be arbitrarily approximated by an entangled state that belongs to our obtained pseudo standard entanglement structure.
arXiv Detail & Related papers (2022-03-15T14:56:43Z) - Non-standard entanglement structure of local unitary self-dual models as
a saturated situation of repeatability in general probabilistic theories [61.12008553173672]
We show the existence of infinite structures of quantum composite system such that it is self-dual with local unitary symmetry.
We also show the existence of a structure of quantum composite system such that non-orthogonal states in the structure are perfectly distinguishable.
arXiv Detail & Related papers (2021-11-29T23:37:58Z) - Free versus Bound Entanglement: Machine learning tackling a NP-hard
problem [0.06091702876917279]
Entanglement detection in high dimensional systems is a NP-hard problem since it is lacking an efficient way.
We find a family of magically symmetric states of bipartite qutrits for which we find $82%$ to be free entangled, $2%$ to be certainly separable and as much as $10%$ to be bound entangled.
arXiv Detail & Related papers (2021-06-07T21:38:39Z) - Quantum anomalous Hall phase in synthetic bilayers via twistless
twistronics [58.720142291102135]
We propose quantum simulators of "twistronic-like" physics based on ultracold atoms and syntheticdimensions.
We show that our system exhibits topologicalband structures under appropriate conditions.
arXiv Detail & Related papers (2020-08-06T19:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.