A Deep Learning Approach for User-Centric Clustering in Cell-Free Massive MIMO Systems
- URL: http://arxiv.org/abs/2410.02775v1
- Date: Tue, 17 Sep 2024 15:12:54 GMT
- Title: A Deep Learning Approach for User-Centric Clustering in Cell-Free Massive MIMO Systems
- Authors: Giovanni Di Gennaro, Amedeo Buonanno, Gianmarco Romano, Stefano Buzzi, Francesco A. N Palmieri,
- Abstract summary: Solution based on deep learning is proposed to solve the user clustering problem.
The proposed solution can scale effectively with the number of users, leveraging long short-term memory cells to operate without the need for retraining.
Numerical results show the effectiveness of the proposed solution, even in the presence of imperfect channel state information due to pilot contamination.
- Score: 7.202538088166535
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Contrary to conventional massive MIMO cellular configurations plagued by inter-cell interference, cell-free massive MIMO systems distribute network resources across the coverage area, enabling users to connect with multiple access points (APs) and boosting both system capacity and fairness across user. In such systems, one critical functionality is the association between APs and users: determining the optimal association is indeed a combinatorial problem of prohibitive complexity. In this paper, a solution based on deep learning is thus proposed to solve the user clustering problem aimed at maximizing the sum spectral efficiency while controlling the number of active connections. The proposed solution can scale effectively with the number of users, leveraging long short-term memory cells to operate without the need for retraining. Numerical results show the effectiveness of the proposed solution, even in the presence of imperfect channel state information due to pilot contamination.
Related papers
- Deep Learning-Based Approach for User Activity Detection with Grant-Free Random Access in Cell-Free Massive MIMO [0.8520624117635328]
This paper explores the application of supervised machine learning models to tackle activity detection issues.
We introduce a data-driven algorithm specifically designed for user activity detection in Cell-Free Massive Multiple-Input Multiple-Output (CF-mMIMO) networks.
The results are compelling: the algorithm achieves an exceptional 99% accuracy rate, confirming its efficacy in real-world applications.
arXiv Detail & Related papers (2024-06-11T11:08:33Z) - Random Aggregate Beamforming for Over-the-Air Federated Learning in Large-Scale Networks [66.18765335695414]
We consider a joint device selection and aggregate beamforming design with the objectives of minimizing the aggregate error and maximizing the number of selected devices.
To tackle the problems in a cost-effective manner, we propose a random aggregate beamforming-based scheme.
We additionally use analysis to study the obtained aggregate error and the number of the selected devices when the number of devices becomes large.
arXiv Detail & Related papers (2024-02-20T23:59:45Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system.
Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively.
arXiv Detail & Related papers (2022-11-01T14:16:05Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
We consider a federated learning model in a wireless system with multiple base stations and inter-cell interference.
We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap.
Our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler.
arXiv Detail & Related papers (2022-08-25T03:37:11Z) - Over-the-Air Multi-Task Federated Learning Over MIMO Interference
Channel [17.362158131772127]
We study over-the-air multi-task FL (OA-MTFL) over the multiple-input multiple-output (MIMO) interference channel.
We propose a novel model aggregation method for the alignment of local gradients for different devices.
We show that due to the use of the new model aggregation method, device selection is no longer essential to our scheme.
arXiv Detail & Related papers (2021-12-27T10:42:04Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Limited-Fronthaul Cell-Free Hybrid Beamforming with Distributed Deep
Neural Network [0.0]
Near-optimal solutions require a large amount of signaling exchange between access points (APs) and the network controller (NC)
We propose two unsupervised deep neural networks (DNN) architectures, fully and partially distributed, that can perform coordinated hybrid beamforming with zero or limited communication overhead between APs and NC.
arXiv Detail & Related papers (2021-06-30T16:42:32Z) - Joint User Pairing and Association for Multicell NOMA: A Pointer
Network-based Approach [22.501227501613204]
We consider a scenario where the user equipments (UEs) are located in a multicell network equipped with multiple base stations.
We formulate the joint user pairing and association problem as an optimization problem using an emerging deep learning architecture called Pointer Network (PtrNet)
The proposed joint user pairing and association scheme achieves near-optimal performance in terms of the aggregate data rate.
arXiv Detail & Related papers (2020-04-15T23:42:19Z) - Multiple Access in Dynamic Cell-Free Networks: Outage Performance and
Deep Reinforcement Learning-Based Design [24.632250413917816]
In future cell-free (or cell-less) wireless networks, a large number of devices in a geographical area will be served simultaneously by a large number of distributed access points (APs)
We propose a novel dynamic cell-free network architecture to reduce the complexity of joint processing of users' signals in presence of a large number of devices and APs.
In our system setting, the proposed DDPG-DDQN scheme is found to achieve around $78%$ of the rate achievable through an exhaustive search-based design.
arXiv Detail & Related papers (2020-01-29T03:00:22Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.