Deep Learning-Based Approach for User Activity Detection with Grant-Free Random Access in Cell-Free Massive MIMO
- URL: http://arxiv.org/abs/2406.07160v1
- Date: Tue, 11 Jun 2024 11:08:33 GMT
- Title: Deep Learning-Based Approach for User Activity Detection with Grant-Free Random Access in Cell-Free Massive MIMO
- Authors: Ali Elkeshawy, HaÏfa Farès, Amor Nafkha,
- Abstract summary: This paper explores the application of supervised machine learning models to tackle activity detection issues.
We introduce a data-driven algorithm specifically designed for user activity detection in Cell-Free Massive Multiple-Input Multiple-Output (CF-mMIMO) networks.
The results are compelling: the algorithm achieves an exceptional 99% accuracy rate, confirming its efficacy in real-world applications.
- Score: 0.8520624117635328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Modern wireless networks must reliably support a wide array of connectivity demands, encompassing various user needs across diverse scenarios. Machine-Type Communication (mMTC) is pivotal in these networks, particularly given the challenges posed by massive connectivity and sporadic device activation patterns. Traditional grant-based random access (GB-RA) protocols face limitations due to constrained orthogonal preamble resources. In response, the adoption of grant-free random access (GF-RA) protocols offers a promising solution. This paper explores the application of supervised machine learning models to tackle activity detection issues in scenarios where non-orthogonal preamble design is considered. We introduce a data-driven algorithm specifically designed for user activity detection in Cell-Free Massive Multiple-Input Multiple-Output (CF-mMIMO) networks operating under GF-RA protocols. Additionally, this study presents a novel clustering strategy that simplifies and enhances activity detection accuracy, assesses the resilience of the algorithm to input perturbations, and investigates the effects of adopting floating-to-fixed-point conversion on algorithm performance. Simulations conducted adhere to 3GPP standards, ensuring accurate channel modeling, and employ a deep learning approach to boost the detection capabilities of mMTC GF-RA devices. The results are compelling: the algorithm achieves an exceptional 99\% accuracy rate, confirming its efficacy in real-world applications.
Related papers
- Distributing Intelligence in 6G Programmable Data Planes for Effective In-Network Deployment of an Active Intrusion Detection System [2.563180814294141]
This research aims to propose a disruptive paradigm in which devices in a typical data plane of a future programmable network have %classification and anomaly detection capabilities and cooperate in a fully distributed fashion to act as an ML-enabled Active Intrusion Detection System "embedded" into the network.
The reported proof-of-concept experiments demonstrate that the proposed paradigm allows working effectively and with a good level of precision while occupying overall less CPU and RAM resources of the devices involved.
arXiv Detail & Related papers (2024-10-31T15:14:15Z) - Convolutional Neural Network Design and Evaluation for Real-Time Multivariate Time Series Fault Detection in Spacecraft Attitude Sensors [41.94295877935867]
This paper presents a novel approach to detecting stuck values within the Accelerometer and Inertial Measurement Unit of a drone-like spacecraft.
A multi-channel Convolutional Neural Network (CNN) is used to perform multi-target classification and independently detect faults in the sensors.
An integration methodology is proposed to enable the network to effectively detect anomalies and trigger recovery actions at the system level.
arXiv Detail & Related papers (2024-10-11T09:36:38Z) - Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
Traditional machine learning-based intrusion detection systems (ML-IDS) possess limitations such as the requirement for labeled data.
Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions.
This paper proposes a novel federated unsupervised anomaly detection framework, FedPCA, that learns common representations of distributed non-i.i.d. datasets.
arXiv Detail & Related papers (2024-07-10T07:23:21Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
An active reconfigurable intelligent surface (RIS)-aided multi-user downlink communication system is investigated.
Non-orthogonal multiple access (NOMA) is employed to improve spectral efficiency, and the active RIS is powered by energy harvesting (EH)
An advanced LSTM based algorithm is developed to predict users' dynamic communication state.
A DDPG based algorithm is proposed to joint control the amplification matrix and phase shift matrix RIS.
arXiv Detail & Related papers (2023-04-11T13:16:28Z) - Sparsity-Aware Intelligent Massive Random Access Control in Open RAN: A
Reinforcement Learning Based Approach [61.74489383629319]
Massive random access of devices in the emerging Open Radio Access Network (O-RAN) brings great challenge to the access control and management.
reinforcement-learning (RL)-assisted scheme of closed-loop access control is proposed to preserve sparsity of access requests.
Deep-RL-assisted SAUD is proposed to resolve highly complex environments with continuous and high-dimensional state and action spaces.
arXiv Detail & Related papers (2023-03-05T12:25:49Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - Federated Learning-Based Risk-Aware Decision toMitigate Fake Task
Impacts on CrowdsensingPlatforms [9.925311092487851]
Mobile crowdsensing (MCS) leverages distributed and non-dedicated sensing concepts by utilizing sensors in a large number of mobile smart devices.
A malicious user submitting fake sensing tasks to an MCS platform may be attempting to consume resources from any number of participants' devices.
A novel approach is proposed to identify fake tasks that contain a number of independent detection devices and an aggregation entity.
arXiv Detail & Related papers (2021-01-04T22:43:24Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.