DANA: Domain-Aware Neurosymbolic Agents for Consistency and Accuracy
- URL: http://arxiv.org/abs/2410.02823v1
- Date: Fri, 27 Sep 2024 18:29:23 GMT
- Title: DANA: Domain-Aware Neurosymbolic Agents for Consistency and Accuracy
- Authors: Vinh Luong, Sang Dinh, Shruti Raghavan, William Nguyen, Zooey Nguyen, Quynh Le, Hung Vo, Kentaro Maegaito, Loc Nguyen, Thao Nguyen, Anh Hai Ha, Christopher Nguyen,
- Abstract summary: Large Language Models (LLMs) have shown remarkable capabilities, but their inherent probabilistic nature often leads to inconsistency and inaccuracy in complex problem-solving tasks.
This paper introduces DANA, an architecture that addresses these issues by integrating domain-specific knowledge with neurosymbolic approaches.
- Score: 3.2354860243748873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown remarkable capabilities, but their inherent probabilistic nature often leads to inconsistency and inaccuracy in complex problem-solving tasks. This paper introduces DANA (Domain-Aware Neurosymbolic Agent), an architecture that addresses these issues by integrating domain-specific knowledge with neurosymbolic approaches. We begin by analyzing current AI architectures, including AutoGPT, LangChain ReAct and OpenAI's ChatGPT, through a neurosymbolic lens, highlighting how their reliance on probabilistic inference contributes to inconsistent outputs. In response, DANA captures and applies domain expertise in both natural-language and symbolic forms, enabling more deterministic and reliable problem-solving behaviors. We implement a variant of DANA using Hierarchical Task Plans (HTPs) in the open-source OpenSSA framework. This implementation achieves over 90\% accuracy on the FinanceBench financial-analysis benchmark, significantly outperforming current LLM-based systems in both consistency and accuracy. Application of DANA in physical industries such as semiconductor shows that its flexible architecture for incorporating knowledge is effective in mitigating the probabilistic limitations of LLMs and has potential in tackling complex, real-world problems that require reliability and precision.
Related papers
- Integrating Fuzzy Logic into Deep Symbolic Regression [3.0846824529023382]
Credit card fraud detection is a critical concern for financial institutions, intensified by the rise of contactless payment technologies.
This paper explores the integration of fuzzy logic into Deep Symbolic Regression to enhance both performance and explainability in fraud detection.
arXiv Detail & Related papers (2024-11-01T07:55:17Z) - Neurosymbolic AI approach to Attribution in Large Language Models [5.3454230926797734]
Neurosymbolic AI (NesyAI) combines the strengths of neural networks with structured symbolic reasoning.
This paper explores how NesyAI frameworks can enhance existing attribution models, offering more reliable, interpretable, and adaptable systems.
arXiv Detail & Related papers (2024-09-30T02:20:36Z) - A Neuro-Symbolic Approach to Multi-Agent RL for Interpretability and
Probabilistic Decision Making [42.503612515214044]
Multi-agent reinforcement learning (MARL) is well-suited for runtime decision-making in systems where multiple agents coexist and compete for shared resources.
Applying common deep learning-based MARL solutions to real-world problems suffers from issues of interpretability, sample efficiency, partial observability, etc.
We present an event-driven formulation, where decision-making is handled by distributed co-operative MARL agents using neuro-symbolic methods.
arXiv Detail & Related papers (2024-02-21T00:16:08Z) - QuantAgent: Seeking Holy Grail in Trading by Self-Improving Large
Language Model [14.800710112671226]
This paper introduces a principled framework to address the core challenge of efficiently building and integrating a domain-specific knowledge base.
In the inner loop, the agent refines its responses by drawing from its knowledge base, while in the outer loop, these responses are tested in real-world scenarios.
We instantiate this framework through an autonomous agent for mining trading signals named QuantAgent.
arXiv Detail & Related papers (2024-02-06T06:47:14Z) - Scaling #DNN-Verification Tools with Efficient Bound Propagation and
Parallel Computing [57.49021927832259]
Deep Neural Networks (DNNs) are powerful tools that have shown extraordinary results in many scenarios.
However, their intricate designs and lack of transparency raise safety concerns when applied in real-world applications.
Formal Verification (FV) of DNNs has emerged as a valuable solution to provide provable guarantees on the safety aspect.
arXiv Detail & Related papers (2023-12-10T13:51:25Z) - FinGPT: Instruction Tuning Benchmark for Open-Source Large Language
Models in Financial Datasets [9.714447724811842]
This paper introduces a distinctive approach anchored in the Instruction Tuning paradigm for open-source large language models.
We capitalize on the interoperability of open-source models, ensuring a seamless and transparent integration.
The paper presents a benchmarking scheme designed for end-to-end training and testing, employing a cost-effective progression.
arXiv Detail & Related papers (2023-10-07T12:52:58Z) - The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in
Deep Learning [73.5095051707364]
We consider classical distribution-agnostic framework and algorithms minimising empirical risks.
We show that there is a large family of tasks for which computing and verifying ideal stable and accurate neural networks is extremely challenging.
arXiv Detail & Related papers (2023-09-13T16:33:27Z) - On Robust Numerical Solver for ODE via Self-Attention Mechanism [82.95493796476767]
We explore training efficient and robust AI-enhanced numerical solvers with a small data size by mitigating intrinsic noise disturbances.
We first analyze the ability of the self-attention mechanism to regulate noise in supervised learning and then propose a simple-yet-effective numerical solver, Attr, which introduces an additive self-attention mechanism to the numerical solution of differential equations.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
Counterfactual explanations aim to provide to end users a set of features that need to be changed in order to achieve a desired outcome.
Current approaches rarely take into account the feasibility of actions needed to achieve the proposed explanations.
We present Counterfactual Explanations as Interventions in Latent Space (CEILS), a methodology to generate counterfactual explanations.
arXiv Detail & Related papers (2021-06-14T20:48:48Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
We study the problem of learning to satisfy temporal logic specifications with a group of agents in an unknown environment.
We develop the first multi-agent reinforcement learning technique for temporal logic specifications.
We provide correctness and convergence guarantees for our main algorithm.
arXiv Detail & Related papers (2021-02-01T01:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.