White-Basilisk: A Hybrid Model for Code Vulnerability Detection
- URL: http://arxiv.org/abs/2507.08540v2
- Date: Thu, 31 Jul 2025 15:49:27 GMT
- Title: White-Basilisk: A Hybrid Model for Code Vulnerability Detection
- Authors: Ioannis Lamprou, Alexander Shevtsov, Ioannis Arapakis, Sotiris Ioannidis,
- Abstract summary: We introduce White-Basilisk, a novel approach to vulnerability detection that demonstrates superior performance.<n>White-Basilisk achieves results in vulnerability detection tasks with a parameter count of only 200M.<n>This research establishes new benchmarks in code security and provides empirical evidence that compact, efficiently designed models can outperform larger counterparts in specialized tasks.
- Score: 50.49233187721795
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The proliferation of software vulnerabilities presents a significant challenge to cybersecurity, necessitating more effective detection methodologies. We introduce White-Basilisk, a novel approach to vulnerability detection that demonstrates superior performance while challenging prevailing assumptions in AI model scaling. Utilizing an innovative architecture that integrates Mamba layers, linear self-attention, and a Mixture of Experts framework, White-Basilisk achieves state-of-the-art results in vulnerability detection tasks with a parameter count of only 200M. The model's capacity to process sequences of unprecedented length enables comprehensive analysis of extensive codebases in a single pass, surpassing the context limitations of current Large Language Models (LLMs). White-Basilisk exhibits robust performance on imbalanced, real-world datasets, while maintaining computational efficiency that facilitates deployment across diverse organizational scales. This research not only establishes new benchmarks in code security but also provides empirical evidence that compact, efficiently designed models can outperform larger counterparts in specialized tasks, potentially redefining optimization strategies in AI development for domain-specific applications.
Related papers
- Taming Polysemanticity in LLMs: Provable Feature Recovery via Sparse Autoencoders [50.52694757593443]
Existing SAE training algorithms often lack rigorous mathematical guarantees and suffer from practical limitations.<n>We first propose a novel statistical framework for the feature recovery problem, which includes a new notion of feature identifiability.<n>We introduce a new SAE training algorithm based on bias adaptation'', a technique that adaptively adjusts neural network bias parameters to ensure appropriate activation sparsity.
arXiv Detail & Related papers (2025-06-16T20:58:05Z) - Expert-in-the-Loop Systems with Cross-Domain and In-Domain Few-Shot Learning for Software Vulnerability Detection [38.083049237330826]
This study explores the use of Large Language Models (LLMs) in software vulnerability assessment by simulating the identification of Python code with known Common Weaknessions (CWEs)<n>Our results indicate that while zero-shot prompting performs poorly, few-shot prompting significantly enhances classification performance.<n> challenges such as model reliability, interpretability, and adversarial robustness remain critical areas for future research.
arXiv Detail & Related papers (2025-06-11T18:43:51Z) - MISLEADER: Defending against Model Extraction with Ensembles of Distilled Models [56.09354775405601]
Model extraction attacks aim to replicate the functionality of a black-box model through query access.<n>Most existing defenses presume that attacker queries have out-of-distribution (OOD) samples, enabling them to detect and disrupt suspicious inputs.<n>We propose MISLEADER, a novel defense strategy that does not rely on OOD assumptions.
arXiv Detail & Related papers (2025-06-03T01:37:09Z) - Improving $(α, f)$-Byzantine Resilience in Federated Learning via layerwise aggregation and cosine distance [7.8973037023478785]
Federated Learning (FL) is a potential solution to data privacy challenges in distributed machine learning.<n>FL systems remain vulnerable to Byzantine attacks, where malicious nodes contribute corrupted model updates.<n>This paper introduces Layerwise Cosine Aggregation, a novel aggregation scheme designed to enhance robustness of these rules in high-dimensional settings.
arXiv Detail & Related papers (2025-03-27T08:07:39Z) - EnStack: An Ensemble Stacking Framework of Large Language Models for Enhanced Vulnerability Detection in Source Code [1.9374282535132379]
We introduce EnStack, a novel ensemble stacking framework that enhances vulnerability detection using natural language processing (NLP) techniques.
Our approach synergizes multiple pre-trained large language models (LLMs) specialized in code understanding.
meta-classifiers consolidate the strengths of each LLM, resulting in a comprehensive model that excels in detecting subtle and complex vulnerabilities.
arXiv Detail & Related papers (2024-11-25T16:47:10Z) - An Adaptive End-to-End IoT Security Framework Using Explainable AI and LLMs [1.9662978733004601]
This paper presents an innovative framework for real-time IoT attack detection and response that leverages Machine Learning (ML), Explainable AI (XAI), and Large Language Models (LLM)
Our end-to-end framework not only facilitates a seamless transition from model development to deployment but also represents a real-world application capability that is often lacking in existing research.
arXiv Detail & Related papers (2024-09-20T03:09:23Z) - On the KL-Divergence-based Robust Satisficing Model [2.425685918104288]
robustness satisficing framework has attracted increasing attention from academia.
We present analytical interpretations, diverse performance guarantees, efficient and stable numerical methods, convergence analysis, and an extension tailored for hierarchical data structures.
We demonstrate the superior performance of our model compared to state-of-the-art benchmarks.
arXiv Detail & Related papers (2024-08-17T10:05:05Z) - Model Stealing Attack against Graph Classification with Authenticity, Uncertainty and Diversity [80.16488817177182]
GNNs are vulnerable to the model stealing attack, a nefarious endeavor geared towards duplicating the target model via query permissions.
We introduce three model stealing attacks to adapt to different actual scenarios.
arXiv Detail & Related papers (2023-12-18T05:42:31Z) - MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks [65.86360607693457]
No-box attacks, where adversaries have no prior knowledge, remain relatively underexplored despite its practical relevance.<n>This work presents a systematic investigation into leveraging large-scale Vision-Language Models (VLMs) as surrogate models for executing no-box attacks.<n>Our theoretical and empirical analyses reveal a key limitation in the execution of no-box attacks stemming from insufficient discriminative capabilities for direct application of vanilla CLIP as a surrogate model.<n>We propose MF-CLIP: a novel framework that enhances CLIP's effectiveness as a surrogate model through margin-aware feature space optimization.
arXiv Detail & Related papers (2023-07-13T08:10:48Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.