論文の概要: Effective Intrusion Detection for UAV Communications using Autoencoder-based Feature Extraction and Machine Learning Approach
- arxiv url: http://arxiv.org/abs/2410.02827v1
- Date: Tue, 1 Oct 2024 08:44:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:34:38.633917
- Title: Effective Intrusion Detection for UAV Communications using Autoencoder-based Feature Extraction and Machine Learning Approach
- Title(参考訳): オートエンコーダを用いた特徴抽出と機械学習によるUAV通信の効果的な侵入検出
- Authors: Tuan-Cuong Vuong, Cong Chi Nguyen, Van-Cuong Pham, Thi-Thanh-Huyen Le, Xuan-Nam Tran, Thien Van Luong,
- Abstract要約: 本稿では,実際のデータセットを用いた自動エンコーダによるUAVの機械学習侵入検出手法を提案する。
実験の結果,提案手法は二分法および多クラス分類タスクのベースラインよりも優れていることがわかった。
- 参考スコア(独自算出の注目度): 2.3845721581271206
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel intrusion detection method for unmanned aerial vehicles (UAV) in the presence of recent actual UAV intrusion dataset. In particular, in the first stage of our method, we design an autoencoder architecture for effectively extracting important features, which are then fed into various machine learning models in the second stage for detecting and classifying attack types. To the best of our knowledge, this is the first attempt to propose such the autoencoder-based machine learning intrusion detection method for UAVs using actual dataset, while most of existing works only consider either simulated datasets or datasets irrelevant to UAV communications. Our experiment results show that the proposed method outperforms the baselines such as feature selection schemes in both binary and multi-class classification tasks.
- Abstract(参考訳): 本稿では,無人航空機(UAV)の最近の実際のUAV侵入データセットの存在下での新しい侵入検知手法を提案する。
特に,本手法の第一段階において,重要な特徴を効果的に抽出するオートエンコーダアーキテクチャを設計し,攻撃タイプの検出と分類を行う第2段階において,各種機械学習モデルに入力する。
我々の知る限りでは、これは実際のデータセットを使用してUAVに対する自動エンコーダベースの機械学習侵入検出手法を提案する最初の試みであり、既存の研究の多くは、UAV通信とは無関係にシミュレーションされたデータセットまたはデータセットのみを考慮している。
実験の結果,提案手法は,二項分類と多項分類の双方において特徴選択方式などのベースラインよりも優れていることがわかった。
関連論文リスト
- SFTrack: A Robust Scale and Motion Adaptive Algorithm for Tracking Small and Fast Moving Objects [2.9803250365852443]
本稿では,無人航空機(UAV)映像における多物体追跡の問題に対処する。
交通監視システムや警察によるリアルタイム容疑者追跡など、様々なUAVアプリケーションにおいて重要な役割を果たしている。
低信頼度検出から対象物体の追跡を開始する新しい追跡戦略を提案する。
論文 参考訳(メタデータ) (2024-10-26T05:09:20Z) - UAV-Based Human Body Detector Selection and Fusion for Geolocated Saliency Map Generation [0.2499907423888049]
無人航空機(UAV)を用いた探索・救助など多くの応用分野において、ソフトリアルタイムの異なるクラスの物体を確実に検出・位置決めする問題は不可欠である。
本研究は、システムコンテキストの視覚に基づく検出器の選択、割り当て、実行の相補的な問題に対処する。
検出結果は,新しいセンサモデルを利用して,正と負の両方の観測を視覚ベースで検出する,有意な位置の地図を構築する手法を用いて融合される。
論文 参考訳(メタデータ) (2024-08-29T13:00:37Z) - Multi-Modal UAV Detection, Classification and Tracking Algorithm -- Technical Report for CVPR 2024 UG2 Challenge [20.459377705070043]
本報告では, CVPR 2024 UAV追跡・姿勢推定チャレンジにおける課題であるUG2+の初当選モデルについて述べる。
高精度なUAV分類・追跡のためのマルチモーダルなUAV検出・分類・3次元追跡手法を提案する。
本システムでは,最先端の分類手法と高度な後処理手順を統合し,精度と堅牢性を向上する。
論文 参考訳(メタデータ) (2024-05-26T07:21:18Z) - Archangel: A Hybrid UAV-based Human Detection Benchmark with Position
and Pose Metadata [10.426019628829204]
ArchangelはUAVベースのオブジェクト検出データセットで、実際のサブセットと合成サブセットで構成されている。
一連の実験は、メタデータを活用する利点を実証するために、最先端のオブジェクト検出器で慎重に設計されている。
論文 参考訳(メタデータ) (2022-08-31T21:45:16Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - A Comprehensive Approach for UAV Small Object Detection with
Simulation-based Transfer Learning and Adaptive Fusion [0.0]
深層学習は、UAVオブジェクト検出に広く採用されているが、このトピックに関する研究は、データセットの量とUAVの小さなスケールによって制限されている。
これらの課題に対処するために,シミュレーションデータに基づく伝達学習と適応融合を組み合わせた新しい総合的なアプローチを提案する。
実験結果から,UAV物体検出における2.7%の性能向上につながるシミュレーションに基づく伝達学習の有効性が示された。
論文 参考訳(メタデータ) (2021-09-04T06:27:13Z) - Anti-UAV: A Large Multi-Modal Benchmark for UAV Tracking [59.06167734555191]
Unmanned Aerial Vehicle (UAV)は、商業とレクリエーションの両方に多くの応用を提供している。
我々は、UAVを追跡し、位置や軌道などの豊富な情報を提供するという課題を考察する。
300以上のビデオペアが580k以上の手動で注釈付きバウンディングボックスを含むデータセット、Anti-UAVを提案します。
論文 参考訳(メタデータ) (2021-01-21T07:00:15Z) - Self-Supervised Person Detection in 2D Range Data using a Calibrated
Camera [83.31666463259849]
2次元LiDARに基づく人検出器のトレーニングラベル(擬似ラベル)を自動生成する手法を提案する。
擬似ラベルで訓練または微調整された自己監視検出器が,手動アノテーションを用いて訓練された検出器を上回っていることを示した。
私達の方法は付加的な分類の努力なしで配置の間に人の探知器を改善する有効な方法です。
論文 参考訳(メタデータ) (2020-12-16T12:10:04Z) - Perceiving Traffic from Aerial Images [86.994032967469]
本研究では,空中画像中の物体を検出するために,バタフライ検出器と呼ばれる物体検出手法を提案する。
UAVDT(UAVDT)とVisDrone 2019(VisDrone 2019)の2つのUAVデータセット上でButterfly Detectorを評価し、従来の最先端の手法よりも高速に動作し、かつリアルタイムに動作可能であることを示す。
論文 参考訳(メタデータ) (2020-09-16T11:37:43Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
教師なしクラスタリングのためのDual-AAE(Dual-AAE)を提案する。
Dual-AAEの目的関数に対する変分推論を行うことで,一対のオートエンコーダをトレーニングすることで最適化可能な新たな再構成損失を導出する。
4つのベンチマーク実験により、Dual-AAEは最先端のクラスタリング手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-23T13:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。