論文の概要: LLMs May Not Be Human-Level Players, But They Can Be Testers: Measuring Game Difficulty with LLM Agents
- arxiv url: http://arxiv.org/abs/2410.02829v1
- Date: Tue, 1 Oct 2024 18:40:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:34:38.625944
- Title: LLMs May Not Be Human-Level Players, But They Can Be Testers: Measuring Game Difficulty with LLM Agents
- Title(参考訳): LLMは人間レベルプレイヤーではないかもしれないが、テスタになれる: LLMエージェントによるゲーム障害の測定
- Authors: Chang Xiao, Brenda Z. Yang,
- Abstract要約: LLMエージェントを用いた一般的なゲームテストフレームワークを提案し、広くプレイされている戦略ゲームであるWordleとSlay the Spireでテストする。
LLMは平均的な人間プレイヤーほど動作しないかもしれないが、単純で汎用的なプロンプト技術によって誘導される場合、人間のプレイヤーが示す困難さと統計的に有意で強い相関関係を示す。
このことから, LLM は開発過程におけるゲーム難易度測定に有効である可能性が示唆された。
- 参考スコア(独自算出の注目度): 10.632179121247466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Large Language Models (LLMs) have demonstrated their potential as autonomous agents across various tasks. One emerging application is the use of LLMs in playing games. In this work, we explore a practical problem for the gaming industry: Can LLMs be used to measure game difficulty? We propose a general game-testing framework using LLM agents and test it on two widely played strategy games: Wordle and Slay the Spire. Our results reveal an interesting finding: although LLMs may not perform as well as the average human player, their performance, when guided by simple, generic prompting techniques, shows a statistically significant and strong correlation with difficulty indicated by human players. This suggests that LLMs could serve as effective agents for measuring game difficulty during the development process. Based on our experiments, we also outline general principles and guidelines for incorporating LLMs into the game testing process.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、様々なタスクにまたがる自律エージェントとしての可能性を示している。
新たな応用の1つは、ゲームにおけるLLMの使用である。
本研究では,ゲーム産業における現実的な問題を探る: LLMはゲーム難度を測定するために使用できるか?
LLMエージェントを用いた一般的なゲームテストフレームワークを提案し、広くプレイされている戦略ゲームであるWordleとSlay the Spireでテストする。
LLMは平均的な人間プレイヤーほど動作しないかもしれないが、単純で汎用的なプロンプト技術によって誘導される場合、人間のプレイヤーが示す困難さと統計的に有意で強い相関関係を示す。
このことから, LLM は開発過程におけるゲーム難易度測定に有効である可能性が示唆された。
また,本実験に基づき,ゲームテストプロセスにLSMを組み込むための一般的な原則とガイドラインを概説した。
関連論文リスト
- Should You Use Your Large Language Model to Explore or Exploit? [55.562545113247666]
探索・探索トレードオフに直面した意思決定エージェントを支援するために,大規模言語モデルの能力を評価する。
現在のLLMは、しばしば利用に苦労するが、小規模タスクのパフォーマンスを大幅に改善するために、コンテキスト内緩和が用いられる可能性がある。
論文 参考訳(メタデータ) (2025-01-31T23:42:53Z) - Beyond Outcomes: Transparent Assessment of LLM Reasoning in Games [54.49589494014147]
GAMEBoTは、大規模言語モデルの厳格な評価のために設計されたゲームアリーナである。
我々は,8つのゲームにまたがる17の卓越したLSMをベンチマークし,様々な戦略能力とゲーム特性について検討した。
以上の結果から,LDMに詳細なCoTプロンプトが付与されている場合でも,GAMEBoTは大きな課題となることが示唆された。
論文 参考訳(メタデータ) (2024-12-18T08:32:53Z) - Are You Human? An Adversarial Benchmark to Expose LLMs [2.6528263069045126]
LLM(Large Language Models)は、会話中に人間を偽装する警告機能を実証している。
LLMインポスタをリアルタイムに公開するための課題として設計されたテキストベースのプロンプトを評価する。
論文 参考訳(メタデータ) (2024-10-12T15:33:50Z) - CUTE: Measuring LLMs' Understanding of Their Tokens [54.70665106141121]
大きな言語モデル(LLM)は、様々なタスクにおいて顕著なパフォーマンスを示す。
LLMはどの程度の間、正書法情報を学ぶことができるのか?
LLMの正書法知識をテストするために設計されたタスクの集合を特徴とする新しいベンチマークを提案する。
論文 参考訳(メタデータ) (2024-09-23T18:27:03Z) - Evaluating and Enhancing LLMs Agent based on Theory of Mind in Guandan: A Multi-Player Cooperative Game under Imperfect Information [36.11862095329315]
大規模言語モデル(LLM)は、不完全な情報で単純なゲームを扱うことに成功している。
本研究では,オープンソースのLLMとAPIベースのLLMが獲得した知識を,洗練されたテキストベースのゲームに適用する可能性について検討する。
論文 参考訳(メタデータ) (2024-08-05T15:36:46Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
大規模言語モデル(LLM)は、重要な現実世界のアプリケーションに統合される。
本稿では,LLMの競合環境における推論能力について検討する。
まず,広く認識されている10のタスクを構成する言語駆動型環境であるGTBenchを提案する。
論文 参考訳(メタデータ) (2024-02-19T18:23:36Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Avalon をテストベッドとして使用し,システムプロンプトを用いてゲームプレイにおける LLM エージェントの誘導を行う。
本稿では,Avalonに適した新しいフレームワークを提案し,効率的なコミュニケーションと対話を容易にするマルチエージェントシステムを提案する。
その結果、適応エージェントの作成におけるフレームワークの有効性を確認し、動的社会的相互作用をナビゲートするLLMベースのエージェントの可能性を提案する。
論文 参考訳(メタデータ) (2023-10-23T14:35:26Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
我々は,ゲーム本来の学術論文を読み取るための新しいアプローチ,SPRINGを提案し,大言語モデル(LLM)を通してゲームの説明とプレイの知識を利用する。
実験では,クラフトオープンワールド環境の設定下で,異なる形態のプロンプトによって引き起こされる文脈内「推論」の品質について検討した。
我々の実験は、LLMが一貫したチェーン・オブ・シークレットによって誘導されると、洗練された高レベル軌道の完成に大きな可能性があることを示唆している。
論文 参考訳(メタデータ) (2023-05-24T18:14:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。