論文の概要: Position: LLM Unlearning Benchmarks are Weak Measures of Progress
- arxiv url: http://arxiv.org/abs/2410.02879v1
- Date: Thu, 3 Oct 2024 18:07:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 05:14:45.904800
- Title: Position: LLM Unlearning Benchmarks are Weak Measures of Progress
- Title(参考訳): ポジション: LLMアンラーニングベンチマークは進歩の弱い尺度である
- Authors: Pratiksha Thaker, Shengyuan Hu, Neil Kale, Yash Maurya, Zhiwei Steven Wu, Virginia Smith,
- Abstract要約: 既存のベンチマークでは、候補となる未学習手法の有効性について、過度に楽観的で誤解を招く可能性がある。
既存のベンチマークは特に、情報を忘れることと保持することの間に、さらに緩やかな依存関係をもたらす変更に対して脆弱である、と認識しています。
- 参考スコア(独自算出の注目度): 31.957968729934745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unlearning methods have the potential to improve the privacy and safety of large language models (LLMs) by removing sensitive or harmful information post hoc. The LLM unlearning research community has increasingly turned toward empirical benchmarks to assess the effectiveness of such methods. In this paper, we find that existing benchmarks provide an overly optimistic and potentially misleading view on the effectiveness of candidate unlearning methods. By introducing simple, benign modifications to a number of popular benchmarks, we expose instances where supposedly unlearned information remains accessible, or where the unlearning process has degraded the model's performance on retained information to a much greater extent than indicated by the original benchmark. We identify that existing benchmarks are particularly vulnerable to modifications that introduce even loose dependencies between the forget and retain information. Further, we show that ambiguity in unlearning targets in existing benchmarks can easily lead to the design of methods that overfit to the given test queries. Based on our findings, we urge the community to be cautious when interpreting benchmark results as reliable measures of progress, and we provide several recommendations to guide future LLM unlearning research.
- Abstract(参考訳): アンラーニング手法は、機密情報や有害情報を取り除き、大きな言語モデル(LLM)のプライバシーと安全性を向上させる可能性がある。
LLMのアンラーニング研究コミュニティは、このような手法の有効性を評価するための実証的なベンチマークに向かっている。
本稿では,既存のベンチマークが,候補となる未学習手法の有効性について,過度に楽観的かつ誤解を招く可能性が示唆された。
多くの人気のあるベンチマークに単純で良質な修正を導入することで、未学習の情報が引き続きアクセス可能なインスタンスや、未学習のプロセスによって保持された情報に対するモデルの性能が元のベンチマークよりはるかに低下したインスタンスを公開します。
既存のベンチマークは特に、情報を忘れることと保持することの間に、さらに緩やかな依存関係をもたらす変更に対して脆弱である、と認識しています。
さらに、既存のベンチマークにおける未学習対象の曖昧さは、与えられたテストクエリに過度に適合するメソッドの設計につながる可能性があることを示す。
本研究の成果から,ベンチマーク結果を信頼性の高い進捗指標と解釈する上で,コミュニティに注意を喚起するとともに,今後のLCMアンラーニング研究の指針となるいくつかの推奨事項を提示する。
関連論文リスト
- Benchmarking Vision Language Model Unlearning via Fictitious Facial Identity Dataset [94.13848736705575]
我々は、未学習アルゴリズムの有効性を頑健に評価するために設計された新しいVLMアンラーニングベンチマークであるFacial Identity Unlearning Benchmark (FIUBench)を紹介する。
情報ソースとその露出レベルを正確に制御する2段階評価パイプラインを適用した。
FIUBench 内の 4 つのベースライン VLM アンラーニングアルゴリズムの評価により,すべての手法がアンラーニング性能に制限されていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-05T23:26:10Z) - Do LLMs estimate uncertainty well in instruction-following? [9.081508933326644]
大規模言語モデル(LLM)は、ユーザ指示に従うことができるため、さまざまなドメインにわたるパーソナルAIエージェントとして価値のあるものになり得る。
命令追従の文脈におけるLCMの不確実性推定能力の最初の体系的評価について述べる。
以上の結果から,既存の不確実性手法は,特にモデルが後続の命令で微妙な誤りを犯した場合に困難であることがわかった。
論文 参考訳(メタデータ) (2024-10-18T16:32:10Z) - Detecting Training Data of Large Language Models via Expectation Maximization [62.28028046993391]
メンバーシップ推論攻撃(MIA)は、特定のインスタンスがターゲットモデルのトレーニングデータの一部であるかどうかを判断することを目的としている。
大規模言語モデル(LLM)にMIAを適用することは、事前学習データの大規模化と、会員シップのあいまいさによって、ユニークな課題をもたらす。
EM-MIAは,予測最大化アルゴリズムを用いて,メンバーシップスコアとプレフィックススコアを反復的に洗練するLLMの新しいMIA手法である。
論文 参考訳(メタデータ) (2024-10-10T03:31:16Z) - Unlearning with Control: Assessing Real-world Utility for Large Language Model Unlearning [97.2995389188179]
最近の研究は、勾配上昇(GA)を通した大規模言語モデル(LLM)の未学習にアプローチし始めている。
その単純さと効率性にもかかわらず、我々はGAベースの手法が過剰な未学習の傾向に直面することを示唆している。
過剰な未学習の度合いを制御できるいくつかの制御手法を提案する。
論文 参考訳(メタデータ) (2024-06-13T14:41:00Z) - Enhancing Trust in LLMs: Algorithms for Comparing and Interpreting LLMs [1.0878040851638]
本稿では,大規模言語モデル(LLM)の信頼性と理解を高めるための評価手法について検討する。
主な評価指標は、パープレキシティ測定、NLPメトリクス(BLEU, ROUGE, METEOR, BERTScore, GLEU, Word Error Rate, character Error Rate), Zero-Shot and Few-Shot Learning Performance, Transfer Learning Evaluation, Adversarial Testing, Fairness and Bias Evaluationである。
論文 参考訳(メタデータ) (2024-06-04T03:54:53Z) - An Information Theoretic Evaluation Metric For Strong Unlearning [20.143627174765985]
情報理論にインスパイアされた新しいホワイトボックス計量であるIDI(Information difference Index)を導入する。
IDIは、これらの特徴と忘れるべきラベルの相互情報を測定することにより、中間特徴の保持情報を定量化する。
我々の実験は、IDIが様々なデータセットやアーキテクチャをまたいだアンラーニングの度合いを効果的に測定できることを実証した。
論文 参考訳(メタデータ) (2024-05-28T06:57:01Z) - Automating Dataset Updates Towards Reliable and Timely Evaluation of Large Language Models [81.27391252152199]
大規模言語モデル(LLM)は、さまざまな自然言語ベンチマークで素晴らしいパフォーマンスを実現している。
本稿では、データセットの自動更新と、その有効性に関する体系的な分析を提案する。
1) 類似したサンプルを生成するための戦略を模倣すること,2) 既存のサンプルをさらに拡張する戦略を拡張すること,である。
論文 参考訳(メタデータ) (2024-02-19T07:15:59Z) - C-ICL: Contrastive In-context Learning for Information Extraction [54.39470114243744]
c-ICLは、正しいサンプル構築と間違ったサンプル構築の両方を活用して、コンテキスト内学習のデモを作成する、新しい数ショット技術である。
各種データセットに対する実験により,c-ICLは従来の数発のインコンテキスト学習法よりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2024-02-17T11:28:08Z) - Don't Make Your LLM an Evaluation Benchmark Cheater [142.24553056600627]
大規模言語モデル(LLM)は人工知能のフロンティアを大幅に進歩させ、モデルキャパシティを著しく向上させた。
モデル性能を評価するために, LLMの能力レベルを測定するための評価ベンチマークを構築するのが典型的な方法である。
評価ベンチマークを用いて不適切なリスクと影響について検討し,評価結果を誤って解釈する。
論文 参考訳(メタデータ) (2023-11-03T14:59:54Z) - Re-Benchmarking Pool-Based Active Learning for Binary Classification [27.034593234956713]
アクティブラーニング(英: Active Learning)は、ラベル付きデータを取得する際の機械学習モデルの性能を大幅に向上させるパラダイムである。
アクティブな学習戦略を評価するためのベンチマークはいくつか存在するが、それらの発見はいくつかの誤解を示している。
この不一致は、コミュニティのために透明で再現可能なベンチマークを開発する動機となります。
論文 参考訳(メタデータ) (2023-06-15T08:47:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。