Tensor Product Structure Geometry under Unitary Channels
- URL: http://arxiv.org/abs/2410.02911v1
- Date: Thu, 3 Oct 2024 19:02:22 GMT
- Title: Tensor Product Structure Geometry under Unitary Channels
- Authors: Faidon Andreadakis, Paolo Zanardi,
- Abstract summary: Locality is typically defined with respect to a product structure (TPS) which identifies the local subsystems of the quantum system.
We show that this TPS distance is related to scrambling properties of the dynamics between the local subsystems and coincides with the power of entangling of 2-unitaries.
For Hamiltonian evolutions at short times, the characteristic timescale of the TPS distance depends on scrambling rates determined by the strength of interactions between the local subsystems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In quantum many-body systems, complex dynamics delocalize the physical degrees of freedom. This spreading of information throughout the system has been extensively studied in relation to quantum thermalization, scrambling, and chaos. Locality is typically defined with respect to a tensor product structure (TPS) which identifies the local subsystems of the quantum system. In this paper, we investigate a simple geometric measure of operator spreading by quantifying the distance of the space of local operators from itself evolved under a unitary channel. We show that this TPS distance is related to the scrambling properties of the dynamics between the local subsystems and coincides with the entangling power of the dynamics in the case of a symmetric bipartition. Additionally, we provide sufficient conditions for the maximization of the TPS distance and show that the class of 2-unitaries provides examples of dynamics that achieve this maximal value. For Hamiltonian evolutions at short times, the characteristic timescale of the TPS distance depends on scrambling rates determined by the strength of interactions between the local subsystems. Beyond this short-time regime, the behavior of the TPS distance is explored through numerical simulations of prototypical models exhibiting distinct ergodic properties, ranging from quantum chaos and integrability to Hilbert space fragmentation and localization.
Related papers
- Space-time correlations in monitored kinetically constrained discrete-time quantum dynamics [0.0]
We show a kinetically constrained many-body quantum system that has a natural implementation on Rydberg quantum simulators.
Despite featuring an uncorrelated infinite-temperature average stationary state, the dynamics displays coexistence of fast and slow space-time regions.
Our work establishes the large deviation framework for discrete-time open quantum many-body systems as a means to characterize complex dynamics and collective phenomena in quantum processors and simulators.
arXiv Detail & Related papers (2024-08-19T10:24:07Z) - Enhanced Entanglement in the Measurement-Altered Quantum Ising Chain [46.99825956909532]
Local quantum measurements do not simply disentangle degrees of freedom, but may actually strengthen the entanglement in the system.
This paper explores how a finite density of local measurement modifies a given state's entanglement structure.
arXiv Detail & Related papers (2023-10-04T09:51:00Z) - Eigenstate correlations, the eigenstate thermalization hypothesis, and quantum information dynamics in chaotic many-body quantum systems [0.0]
We consider correlations between eigenstates specific to spatially extended systems and that characterise entanglement dynamics and operator spreading.
The correlations associated with scrambling of quantum information lie outside the standard framework established by the eigenstate thermalisation hypothesis (ETH)
We establish the simplest correlation function that captures these correlations and discuss features of its behaviour that are expected to be universal at long distances and low energies.
arXiv Detail & Related papers (2023-09-22T16:28:15Z) - Distinguishing dynamical quantum criticality through local fidelity
distances [0.0]
We study the dynamical quantum phase transition in integrable and non-integrable Ising chains.
The non-analyticities in the quantum distance between two subsystem density matrices identify the critical time.
We propose a distance measure from the upper bound of the local quantum fidelity for certain quench protocols.
arXiv Detail & Related papers (2023-08-01T10:27:35Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - A Multisite Decomposition of the Tensor Network Path Integrals [0.0]
We extend the tensor network path integral (TNPI) framework to efficiently simulate quantum systems with local dissipative environments.
The MS-TNPI method is useful for studying a variety of extended quantum systems coupled with solvents.
arXiv Detail & Related papers (2021-09-20T17:55:53Z) - Spatio-temporal heterogeneity of entanglement in many-body localized
systems [0.0]
We find that the relaxation times of local entanglement, as measured by the concurrence, are spatially correlated yielding a dynamical length scale for quantum entanglement.
We propose a previously unrecognized connection between the behavior of classical glasses and the genuine quantum dynamics of MBL systems.
arXiv Detail & Related papers (2021-08-12T08:33:44Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Out-of-time-order correlations and the fine structure of eigenstate
thermalisation [58.720142291102135]
Out-of-time-orderors (OTOCs) have become established as a tool to characterise quantum information dynamics and thermalisation.
We show explicitly that the OTOC is indeed a precise tool to explore the fine details of the Eigenstate Thermalisation Hypothesis (ETH)
We provide an estimation of the finite-size scaling of $omega_textrmGOE$ for the general class of observables composed of sums of local operators in the infinite-temperature regime.
arXiv Detail & Related papers (2021-03-01T17:51:46Z) - Continuous and time-discrete non-Markovian system-reservoir
interactions: Dissipative coherent quantum feedback in Liouville space [62.997667081978825]
We investigate a quantum system simultaneously exposed to two structured reservoirs.
We employ a numerically exact quasi-2D tensor network combining both diagonal and off-diagonal system-reservoir interactions with a twofold memory for continuous and discrete retardation effects.
As a possible example, we study the non-Markovian interplay between discrete photonic feedback and structured acoustic phononovian modes, resulting in emerging inter-reservoir correlations and long-living population trapping within an initially-excited two-level system.
arXiv Detail & Related papers (2020-11-10T12:38:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.