論文の概要: F-Fidelity: A Robust Framework for Faithfulness Evaluation of Explainable AI
- arxiv url: http://arxiv.org/abs/2410.02970v2
- Date: Thu, 06 Mar 2025 20:06:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-10 19:13:14.643803
- Title: F-Fidelity: A Robust Framework for Faithfulness Evaluation of Explainable AI
- Title(参考訳): F-Fidelity: 説明可能なAIの忠実度評価のためのロバストなフレームワーク
- Authors: Xu Zheng, Farhad Shirani, Zhuomin Chen, Chaohao Lin, Wei Cheng, Wenbo Guo, Dongsheng Luo,
- Abstract要約: XAI技術は、ディープラーニングモデルから意味のある洞察を抽出することができる。
適切に評価する方法は、未解決の問題である。
我々は,XAIのための堅牢な評価フレームワークとして,F-Fidelity(F-Fidelity)を提案する。
- 参考スコア(独自算出の注目度): 15.314388210699443
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent research has developed a number of eXplainable AI (XAI) techniques, such as gradient-based approaches, input perturbation-base methods, and black-box explanation methods. While these XAI techniques can extract meaningful insights from deep learning models, how to properly evaluate them remains an open problem. The most widely used approach is to perturb or even remove what the XAI method considers to be the most important features in an input and observe the changes in the output prediction. This approach, although straightforward, suffers the Out-of-Distribution (OOD) problem as the perturbed samples may no longer follow the original data distribution. A recent method RemOve And Retrain (ROAR) solves the OOD issue by retraining the model with perturbed samples guided by explanations. However, using the model retrained based on XAI methods to evaluate these explainers may cause information leakage and thus lead to unfair comparisons. We propose Fine-tuned Fidelity (F-Fidelity), a robust evaluation framework for XAI, which utilizes i) an explanation-agnostic fine-tuning strategy, thus mitigating the information leakage issue, and ii) a random masking operation that ensures that the removal step does not generate an OOD input. We also design controlled experiments with state-of-the-art (SOTA) explainers and their degraded version to verify the correctness of our framework. We conduct experiments on multiple data modalities, such as images, time series, and natural language. The results demonstrate that F-Fidelity significantly improves upon prior evaluation metrics in recovering the ground-truth ranking of the explainers. Furthermore, we show both theoretically and empirically that, given a faithful explainer, F-Fidelity metric can be used to compute the sparsity of influential input components, i.e., to extract the true explanation size.
- Abstract(参考訳): 近年の研究では、勾配ベースのアプローチ、入力摂動ベース手法、ブラックボックス説明法など、多くのeXplainable AI(XAI)技術が開発されている。
これらのXAI技術は、ディープラーニングモデルから有意義な洞察を引き出すことができるが、それらを適切に評価する方法は、未解決の問題のままである。
最も広く使われているアプローチは、XAI法が入力において最も重要な特徴と見なすものを摂動または取り除き、出力予測の変化を観察することである。
このアプローチは単純ではあるが、摂動サンプルが元のデータ分布に従わなくなるため、アウト・オブ・ディストリビューション(OOD)問題に悩まされる。
RemOve And Retrain (ROAR) の最近の手法は、説明によって導かれる摂動サンプルでモデルを再トレーニングすることで、OODの問題を解決する。
しかし、XAI法に基づいて再訓練されたモデルを用いて、これらの説明を評価すれば、情報漏洩が生じ、不公平な比較につながる可能性がある。
我々はXAIのための頑健な評価フレームワークであるF-Fidelityを提案する。
一 情報漏洩の問題を緩和する説明非依存の微調整戦略
二 除去工程がOOD入力を発生させないことを保証する無作為なマスキング動作
また,本フレームワークの正当性を検証するために,最新技術(SOTA)説明器と劣化バージョンを用いた制御実験を設計した。
我々は、画像、時系列、自然言語など、複数のデータモダリティの実験を行う。
その結果, F-Fidelity は, 説明者の信頼度を回復する上で, 先行評価指標よりも有意に向上することが示唆された。
さらに、忠実な説明器が与えられた場合、F-フィデリティメートル法は、影響力のある入力成分の空間性を計算し、すなわち真の説明サイズを抽出することができることを理論的および実証的に示す。
関連論文リスト
- PEEL the Layers and Find Yourself: Revisiting Inference-time Data Leakage for Residual Neural Networks [64.90981115460937]
本稿では、ディープニューラルネットワーク(NN)の推論時データ漏洩リスクについて検討する。
残差NNの中間出力からブロックワイズ入力特徴を効果的に回収できる新しい後方特徴逆変換法である textbfPEEL を提案する。
その結果,平均二乗誤差 (MSE) で評価した場合,PEEL は最先端の回収方法よりも桁違いに優れていることがわかった。
論文 参考訳(メタデータ) (2025-04-08T20:11:05Z) - Effort: Efficient Orthogonal Modeling for Generalizable AI-Generated Image Detection [66.16595174895802]
既存のAI生成画像(AIGI)検出手法は、しばしば限定的な一般化性能に悩まされる。
本稿では、AIGI検出において、これまで見過ごされてきた重要な非対称性現象を同定する。
論文 参考訳(メタデータ) (2024-11-23T19:10:32Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Why Fine-Tuning Struggles with Forgetting in Machine Unlearning? Theoretical Insights and a Remedial Approach [19.307968983872588]
ファインチューニング(FT)手法は、未学習を近似するための基本的なアプローチの1つとなっている。
本稿では,線形回帰フレームワーク内での機械学習のためのFT法に関する最初の理論的解析を行う。
本稿では,事前学習モデルにおけるデータ保存の維持を緩和するための理論的アプローチを提案する。
論文 参考訳(メタデータ) (2024-10-04T18:01:52Z) - Robustness of Explainable Artificial Intelligence in Industrial Process Modelling [43.388607981317016]
我々は,地中真実シミュレーションと感度解析に基づいて,現在のXAI手法を評価する。
モデル化された産業プロセスの真の感度を正確に予測する能力において,XAI法とXAI法の違いを示す。
論文 参考訳(メタデータ) (2024-07-12T09:46:26Z) - CHILLI: A data context-aware perturbation method for XAI [3.587367153279351]
機械学習(ML)モデルの信頼性は評価が難しいが、リスクの高いアプリケーションや倫理的に敏感なアプリケーションでは重要である。
本稿では,文脈に意識された摂動を生成することで,データコンテキストをXAIに組み込む新しいフレームワークCHILLIを提案する。
これは説明の正確さと正確さを両立させることが示されている。
論文 参考訳(メタデータ) (2024-07-10T10:18:07Z) - Explainability of Machine Learning Models under Missing Data [2.880748930766428]
データ不足は、モデルの性能と解釈可能性を著しく損なうおそれのある問題である。
本稿では, 欠落データ分野の展開を要約し, 種々の計算法がシェープリー値の計算に与える影響について考察する。
論文 参考訳(メタデータ) (2024-06-29T11:31:09Z) - Assessing Fidelity in XAI post-hoc techniques: A Comparative Study with
Ground Truth Explanations Datasets [0.0]
入力への出力情報のバックプロパゲーションに基づくXAI手法により精度と信頼性が向上する。
バックプロパゲーション法は、よりノイズの多いサリエンシマップを生成する傾向がある。
発見はXAI法の進歩に重要な意味を持つ。
論文 参考訳(メタデータ) (2023-11-03T14:57:24Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
低リソーステキスト分類のための新しい説明可能なアクティブラーニングフレームワーク(XAL)を提案する。
XALは分類器に対して、推論を正当化し、合理的な説明ができないラベルのないデータを掘り下げることを推奨している。
6つのデータセットの実験では、XALは9つの強いベースラインに対して一貫した改善を達成している。
論文 参考訳(メタデータ) (2023-10-09T08:07:04Z) - Precise Benchmarking of Explainable AI Attribution Methods [0.0]
本稿では,最新のXAI属性手法のベンチマークのための新しい評価手法を提案する。
提案手法は, 基礎的真理の説明を伴う合成分類モデルから成り立っている。
実験の結果, Guided-Backprop 法と Smoothgrad XAI 法の性能に関する新たな知見が得られた。
論文 参考訳(メタデータ) (2023-08-06T17:03:32Z) - Interpretable pipelines with evolutionarily optimized modules for RL
tasks with visual inputs [5.254093731341154]
進化的アルゴリズムを用いて協調最適化された複数の解釈可能なモデルからなるエンドツーエンドパイプラインを提案する。
Atariベンチマークの強化学習環境において,本手法を検証した。
論文 参考訳(メタデータ) (2022-02-10T10:33:44Z) - Agree to Disagree: Diversity through Disagreement for Better
Transferability [54.308327969778155]
本稿では,D-BAT(Diversity-By-dis-Agreement Training)を提案する。
我々は、D-BATが一般化された相違の概念から自然に現れることを示す。
論文 参考訳(メタデータ) (2022-02-09T12:03:02Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - A new interpretable unsupervised anomaly detection method based on
residual explanation [47.187609203210705]
本稿では,大規模システムにおけるAEベースのADの制限に対処する新しい解釈可能性手法であるRXPを提案する。
実装の単純さ、計算コストの低さ、決定論的振る舞いが特徴である。
実鉄道路線のデータを用いた実験において,提案手法はSHAPよりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-03-14T15:35:45Z) - Evaluating Explainable AI: Which Algorithmic Explanations Help Users
Predict Model Behavior? [97.77183117452235]
我々は、モデル解釈性に対するアルゴリズム的説明の影響を分離するために、人体テストを実施している。
方法の有効性の明確な証拠はごく少数にみえる。
以上の結果から,説明がシミュラビリティにどのように影響するかの信頼性と包括的評価が得られた。
論文 参考訳(メタデータ) (2020-05-04T20:35:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。