論文の概要: Why Fine-Tuning Struggles with Forgetting in Machine Unlearning? Theoretical Insights and a Remedial Approach
- arxiv url: http://arxiv.org/abs/2410.03833v1
- Date: Fri, 4 Oct 2024 18:01:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 16:00:59.478558
- Title: Why Fine-Tuning Struggles with Forgetting in Machine Unlearning? Theoretical Insights and a Remedial Approach
- Title(参考訳): 機械学習におけるファインチューニングの課題 : 理論的考察と治療的アプローチ
- Authors: Meng Ding, Jinhui Xu, Kaiyi Ji,
- Abstract要約: ファインチューニング(FT)手法は、未学習を近似するための基本的なアプローチの1つとなっている。
本稿では,線形回帰フレームワーク内での機械学習のためのFT法に関する最初の理論的解析を行う。
本稿では,事前学習モデルにおけるデータ保存の維持を緩和するための理論的アプローチを提案する。
- 参考スコア(独自算出の注目度): 19.307968983872588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Unlearning has emerged as a significant area of research, focusing on 'removing' specific subsets of data from a trained model. Fine-tuning (FT) methods have become one of the fundamental approaches for approximating unlearning, as they effectively retain model performance. However, it is consistently observed that naive FT methods struggle to forget the targeted data. In this paper, we present the first theoretical analysis of FT methods for machine unlearning within a linear regression framework, providing a deeper exploration of this phenomenon. We investigate two scenarios with distinct features and overlapping features. Our findings reveal that FT models can achieve zero remaining loss yet fail to forget the forgetting data, unlike golden models (trained from scratch without the forgetting data). This analysis reveals that naive FT methods struggle with forgetting because the pretrained model retains information about the forgetting data, and the fine-tuning process has no impact on this retained information. To address this issue, we first propose a theoretical approach to mitigate the retention of forgetting data in the pretrained model. Our analysis shows that removing the forgetting data's influence allows FT models to match the performance of the golden model. Building on this insight, we introduce a discriminative regularization term to practically reduce the unlearning loss gap between the fine-tuned model and the golden model. Our experiments on both synthetic and real-world datasets validate these theoretical insights and demonstrate the effectiveness of the proposed regularization method.
- Abstract(参考訳): 機械学習は、トレーニングされたモデルからデータの特定のサブセットを「取り除く」ことに焦点を当てた、重要な研究領域として登場した。
ファインチューニング(FT)手法は、モデル性能を効果的に維持するため、未学習を近似するための基本的なアプローチの1つとなっている。
しかし,本手法は対象データを忘れることに苦慮している。
本稿では,線形回帰フレームワーク内でのFT手法の理論的解析を行い,この現象を深く研究する。
異なる特徴と重なり合う特徴を持つ2つのシナリオについて検討する。
以上の結果から,FTモデルが残余損失をゼロにできるが,黄金モデルと異なり,忘れるデータを忘れることができないことが明らかとなった。
この分析結果から,事前学習したモデルでは忘れデータに関する情報が保持され,微調整処理はこの保持情報に影響を与えないことが判明した。
この問題に対処するために,我々はまず,事前訓練されたモデルにおけるデータ保存の維持を緩和する理論的アプローチを提案する。
分析の結果, 忘れるデータの影響を除去することで, FTモデルが黄金モデルの性能と一致できることが判明した。
この知見に基づいて、細調整モデルと黄金モデルの間の未学習損失ギャップを実質的に低減する識別正則化項を導入する。
提案手法の有効性を検証し,提案手法の有効性を実証した。
関連論文リスト
- Machine Unlearning on Pre-trained Models by Residual Feature Alignment Using LoRA [15.542668474378633]
本稿では,事前学習モデルを用いた新しい機械学習手法を提案する。
LoRAを利用して、モデルの中間機能を事前訓練された特徴と残像に分解する。
本手法は,保持集合上のゼロ残差を学習し,未学習集合上でシフト残差を学習することを目的としている。
論文 参考訳(メタデータ) (2024-11-13T08:56:35Z) - Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
機械学習 -- 事前訓練された機械学習モデルで、小さな"ターゲットセット"トレーニングデータを効率的に削除する -- は、最近関心を集めている。
最近の研究では、機械学習技術はこのような困難な環境では耐えられないことが示されている。
論文 参考訳(メタデータ) (2024-10-30T17:20:10Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
我々は、報酬モデルと政策モデルを同時に構築するために、逆強化学習(IRL)技術を活用することを提案する。
提案アルゴリズムはIRL問題の定常解に収束することを示す。
その結果,アライメントプロセス全体を通じて報酬学習を活用することは有益であることが示唆された。
論文 参考訳(メタデータ) (2024-05-28T07:11:05Z) - The Edge-of-Reach Problem in Offline Model-Based Reinforcement Learning [37.387280102209274]
オフライン強化学習は、事前に収集されたデータセットからエージェントをトレーニング可能にすることを目的としている。
モデルベースの手法は、エージェントが学習されたダイナミックスモデルでロールアウトを介して追加の合成データを収集できるようにすることで、ソリューションを提供する。
しかし、学習したダイナミックスモデルを真のエラーフリーなダイナミックスに置き換えると、既存のモデルベースのメソッドは完全に失敗する。
本稿では, エッジ・オブ・リーチ問題に直接対処する単純で堅牢な手法であるReach-Aware Value Learning (RAVL)を提案する。
論文 参考訳(メタデータ) (2024-02-19T20:38:00Z) - An Information Theoretic Approach to Machine Unlearning [45.600917449314444]
学びの鍵となる課題は、モデルのパフォーマンスを保ちながら、必要なデータをタイムリーに忘れることである。
この研究では、ゼロショットのアンラーニングシナリオに対処し、未学習のアルゴリズムは、トレーニングされたモデルと忘れられるデータだけが与えられたデータを削除できなければならない。
モデルの幾何に基づいて、単純だが原則化されたゼロショットアンラーニング法を導出する。
論文 参考訳(メタデータ) (2024-02-02T13:33:30Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Machine Unlearning Methodology base on Stochastic Teacher Network [33.763901254862766]
「忘れられる権利」は、データ所有者に、モデルトレーニングに使用したデータを積極的に取り出す権利を与える。
既存の機械学習手法は、ディープラーニングモデルから知識を素早く取り除くのに効果がないことが判明した。
本稿では,ネットワークを教師として利用して,忘れられたデータによる影響の軽減を図ることを提案する。
論文 参考訳(メタデータ) (2023-08-28T06:05:23Z) - Machine Unlearning of Features and Labels [72.81914952849334]
機械学習モデルにおけるアンラーニングとラベルのファーストシナリオを提案する。
提案手法は,影響関数の概念に基づいて,モデルパラメータのクローズドフォーム更新によるアンラーニングを実現する。
論文 参考訳(メタデータ) (2021-08-26T04:42:24Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
本稿では,不備な値を含む入力からの推論をインプットなしでトレーニングするIGSGD法の重要性について紹介する。
バックプロパゲーションによるモデルのトレーニングに使用する勾配の調整には強化学習(RL)を用いる。
我々の計算自由予測は、最先端の計算手法を用いて従来の2段階の計算自由予測よりも優れている。
論文 参考訳(メタデータ) (2021-07-05T12:44:39Z) - Variational Bayesian Unlearning [54.26984662139516]
本研究では, ベイズモデルの学習を, 消去する訓練データの小さな部分集合から, ほぼ非学習する問題について検討する。
消去されたデータから完全に学習されていないデータと、過去の信念を完全に忘れていないデータとをトレードオフする証拠を最小化するのと等価であることを示す。
VI を用いたモデルトレーニングでは、完全なデータから近似した(正確には)後続の信念しか得られず、未学習をさらに困難にしている。
論文 参考訳(メタデータ) (2020-10-24T11:53:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。