論文の概要: On Logical Extrapolation for Mazes with Recurrent and Implicit Networks
- arxiv url: http://arxiv.org/abs/2410.03020v1
- Date: Thu, 3 Oct 2024 22:07:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:25:56.040157
- Title: On Logical Extrapolation for Mazes with Recurrent and Implicit Networks
- Title(参考訳): リカレントネットワークとインシシトネットワークを持つ迷路の論理的外挿について
- Authors: Brandon Knutson, Amandin Chyba Rabeendran, Michael Ivanitskiy, Jordan Pettyjohn, Cecilia Diniz-Behn, Samy Wu Fung, Daniel McKenzie,
- Abstract要約: 我々は,外挿の能力が従来提案されていたよりも頑丈でないことを示す。
INNは、より大きな迷路インスタンスに一般化できるが、迷路サイズ以外の難易度軸に沿って一般化できないことを示す。
- 参考スコア(独自算出の注目度): 2.0037131645168396
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work has suggested that certain neural network architectures-particularly recurrent neural networks (RNNs) and implicit neural networks (INNs) are capable of logical extrapolation. That is, one may train such a network on easy instances of a specific task and then apply it successfully to more difficult instances of the same task. In this paper, we revisit this idea and show that (i) The capacity for extrapolation is less robust than previously suggested. Specifically, in the context of a maze-solving task, we show that while INNs (and some RNNs) are capable of generalizing to larger maze instances, they fail to generalize along axes of difficulty other than maze size. (ii) Models that are explicitly trained to converge to a fixed point (e.g. the INN we test) are likely to do so when extrapolating, while models that are not (e.g. the RNN we test) may exhibit more exotic limiting behaviour such as limit cycles, even when they correctly solve the problem. Our results suggest that (i) further study into why such networks extrapolate easily along certain axes of difficulty yet struggle with others is necessary, and (ii) analyzing the dynamics of extrapolation may yield insights into designing more efficient and interpretable logical extrapolators.
- Abstract(参考訳): 最近の研究は、特定のニューラルネットワークアーキテクチャー、特にリカレントニューラルネットワーク(RNN)と暗黙ニューラルネットワーク(INN)が論理外挿が可能であることを示唆している。
すなわち、特定のタスクの簡単なインスタンス上でそのようなネットワークをトレーニングし、同じタスクのより難しいインスタンスにうまく適用することができる。
本稿では,この考え方を再考し,それを実証する。
(i)外挿の能力は、前述したほど頑丈ではない。
具体的には、迷路解決タスクの文脈において、INN(およびいくつかのRNN)がより大きな迷路インスタンスに一般化できる一方で、迷路サイズ以外の困難さの軸に沿って一般化することができないことを示す。
(i)不定点(例えば、テストしたINN)に明示的に収束するように訓練されたモデルは、外挿時にそうする傾向があり、一方(例えば、テストしたRNN)でないモデルは、その問題を正しく解いたとしても、制限サイクルのようなよりエキゾチックな制限行動を示す可能性がある。
私たちの結果は
一 困難ある軸に沿って容易に外挿するが、他人と戦わなければならない理由を更に研究し、
(II)外挿の力学を解析することにより、より効率的で解釈可能な論理外挿装置の設計に関する洞察が得られる。
関連論文リスト
- GINN-KAN: Interpretability pipelining with applications in Physics Informed Neural Networks [5.2969467015867915]
本稿では,解釈可能性パイプラインの概念を導入し,複数の解釈可能性技術を導入し,各手法の精度を向上する。
我々は、標準的なニューラルネットワークアーキテクチャに解釈可能性を導入する可能性のために選択された2つの最近のモデルを評価する。
両モデルの利点を合成する新しい解釈可能なニューラルネットワークGINN-KANを提案する。
論文 参考訳(メタデータ) (2024-08-27T04:57:53Z) - Pursing the Sparse Limitation of Spiking Deep Learning Structures [42.334835610250714]
スパイキングニューラルネットワーク(SNN)はその優れた計算とエネルギー効率のために注目を集めている。
重量とパッチレベルの当選チケットを同時に識別できる革新的なアルゴリズムを提案する。
我々は, モデル構造が極めて疎い場合でも, スパイキング抽選券が同等あるいは優れた性能を達成できることを実証した。
論文 参考訳(メタデータ) (2023-11-18T17:00:40Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Neural Networks and the Chomsky Hierarchy [27.470857324448136]
チョムスキー理論の知見が実際にニューラルネットワークの一般化の限界を予測できるかどうかを考察する。
膨大なデータとトレーニング時間さえも、非自明な一般化に繋がらない負の結果を示す。
この結果から,RNNとTransformerは非正規タスクの一般化に失敗し,構造化メモリで拡張されたネットワークのみがコンテキストレス・コンテキスト依存タスクの一般化に成功していることがわかった。
論文 参考訳(メタデータ) (2022-07-05T15:06:11Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Mitigating Performance Saturation in Neural Marked Point Processes:
Architectures and Loss Functions [50.674773358075015]
本稿では,グラフ畳み込み層のみを利用するGCHPという単純なグラフベースのネットワーク構造を提案する。
我々は,GCHPがトレーニング時間を大幅に短縮し,時間間確率仮定による確率比損失がモデル性能を大幅に改善できることを示した。
論文 参考訳(メタデータ) (2021-07-07T16:59:14Z) - SpikeMS: Deep Spiking Neural Network for Motion Segmentation [7.491944503744111]
textitSpikeMSは、モーションセグメンテーションの大規模な問題に対する最初のディープエンコーダデコーダSNNアーキテクチャである。
textitSpikeMSは,テキストインクリメンタルな予測や,より少ない量のテストデータからの予測を行うことができることを示す。
論文 参考訳(メタデータ) (2021-05-13T21:34:55Z) - Thinking Deeply with Recurrence: Generalizing from Easy to Hard
Sequential Reasoning Problems [51.132938969015825]
我々は、リカレントネットワークは、非リカレントディープモデルの振る舞いを詳細にエミュレートする能力を有することを観察する。
再帰ステップの少ない単純な迷路を解くように訓練された再帰ネットワークは、推論中に追加の繰り返しを実行するだけで、より複雑な問題を解決することができる。
論文 参考訳(メタデータ) (2021-02-22T14:09:20Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z) - Efficient Probabilistic Logic Reasoning with Graph Neural Networks [63.099999467118245]
マルコフ論理ネットワーク(MLN)は、多くの知識グラフ問題に対処するために用いられる。
MLNの推論は計算集約的であり、MLNの産業規模での応用は非常に困難である。
本稿では,表現力とモデルの単純さとのバランスのよいグラフニューラルネット(GNN)モデルであるExpressGNNを提案する。
論文 参考訳(メタデータ) (2020-01-29T23:34:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。