論文の概要: STALP: Style Transfer with Auxiliary Limited Pairing
- arxiv url: http://arxiv.org/abs/2110.10501v1
- Date: Wed, 20 Oct 2021 11:38:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-23 21:01:09.572993
- Title: STALP: Style Transfer with Auxiliary Limited Pairing
- Title(参考訳): STALP:補助リミテッドペアリングによるスタイルトランスファー
- Authors: David Futschik, Michal Ku\v{c}era, Michal Luk\'a\v{c}, Zhaowen Wang,
Eli Shechtman, Daniel S\'ykora
- Abstract要約: 本稿では,1対のソース画像と,そのスタイリング画像を用いた画像の例ベーススタイリング手法を提案する。
本研究では,対象画像に対するリアルタイムな意味論的スタイル転送が可能な画像翻訳ネットワークの訓練方法を示す。
- 参考スコア(独自算出の注目度): 36.23393954839379
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an approach to example-based stylization of images that uses a
single pair of a source image and its stylized counterpart. We demonstrate how
to train an image translation network that can perform real-time semantically
meaningful style transfer to a set of target images with similar content as the
source image. A key added value of our approach is that it considers also
consistency of target images during training. Although those have no stylized
counterparts, we constrain the translation to keep the statistics of neural
responses compatible with those extracted from the stylized source. In contrast
to concurrent techniques that use a similar input, our approach better
preserves important visual characteristics of the source style and can deliver
temporally stable results without the need to explicitly handle temporal
consistency. We demonstrate its practical utility on various applications
including video stylization, style transfer to panoramas, faces, and 3D models.
- Abstract(参考訳): 本稿では,1対のソース画像と,そのスタイリング画像を用いた画像の例ベーススタイリング手法を提案する。
本研究では,ソースコードと類似した内容のターゲット画像に対して,リアルタイムな意味論的スタイル転送が可能な画像翻訳ネットワークの訓練方法を示す。
このアプローチの重要な付加価値は、トレーニング中にターゲット画像の一貫性も考慮していることです。
これらはスタイリングされたものではないが、スタイリングされたソースから抽出した情報とニューラルレスポンスの統計の整合性を維持するために翻訳を制約する。
類似した入力を使用する並行手法とは対照的に,本手法はソーススタイルの重要な視覚的特徴をよりよく保存し,時間的一貫性を明示的に扱わずに時間的安定な結果を提供できる。
ビデオスタイリング,パノラマへのスタイル転送,顔,3Dモデルなど,様々なアプリケーションで実用性を示す。
関連論文リスト
- PixelShuffler: A Simple Image Translation Through Pixel Rearrangement [0.0]
スタイル転送は画像から画像への変換の応用として広く研究されており、ある画像の内容を他の画像のスタイルと組み合わせた画像の合成が目的である。
既存の最先端の手法は、しばしば高品質なスタイル転送を実現するために拡散モデルや言語モデルを含む複雑なニューラルネットワークに依存している。
本稿では,画像から画像への変換問題に対処する新たなピクセルシャッフル手法を提案する。
論文 参考訳(メタデータ) (2024-10-03T22:08:41Z) - ZePo: Zero-Shot Portrait Stylization with Faster Sampling [61.14140480095604]
本稿では,4つのサンプリングステップでコンテンツとスタイルの融合を実現する拡散モデルに基づく,インバージョンフリーなポートレートスタイリングフレームワークを提案する。
本稿では,一貫性機能における冗長な特徴をマージする機能統合戦略を提案し,注意制御の計算負荷を低減させる。
論文 参考訳(メタデータ) (2024-08-10T08:53:41Z) - StyleMamba : State Space Model for Efficient Text-driven Image Style Transfer [9.010012117838725]
StyleMambaは、テキストプロンプトを対応する視覚スタイルに変換する効率的な画像スタイル転送フレームワークである。
既存のテキストガイドによるスタイリングには、数百のトレーニングイテレーションが必要で、多くのコンピューティングリソースが必要です。
論文 参考訳(メタデータ) (2024-05-08T12:57:53Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST)は、新しいスタイルの学習・伝達フレームワークである。
入力依存温度を導入することで,スタイル伝達のための適応型コントラスト学習方式を提案する。
本フレームワークは,スタイル表現とスタイル伝達のための並列コントラスト学習方式,スタイル分布を効果的に学習するためのドメイン拡張モジュール,スタイル伝達のための生成ネットワークという,3つの重要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-03-09T04:35:00Z) - DSI2I: Dense Style for Unpaired Image-to-Image Translation [70.93865212275412]
Inpaired exemplar-based image-to-image (UEI2I) 翻訳は、ソース画像をターゲット画像領域に変換する。
我々は,スタイルを高密度な特徴写像として表現し,外部意味情報を必要とせず,よりきめ細かなソース画像の転送を可能にすることを提案する。
以上の結果から,本手法による翻訳は,より多様であり,資料内容の保存性が向上し,最先端の手法と比較すると,先例に近づいたことが示唆された。
論文 参考訳(メタデータ) (2022-12-26T18:45:25Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStylerは、拡散された結果の内容とスタイルのバランスを制御するための二重拡散処理アーキテクチャである。
本稿では、逆復調処理をベースとしたコンテンツ画像に基づく学習可能なノイズを提案し、そのスタイリング結果により、コンテンツ画像の構造情報をよりよく保存する。
論文 参考訳(メタデータ) (2022-11-19T12:30:44Z) - Line Search-Based Feature Transformation for Fast, Stable, and Tunable
Content-Style Control in Photorealistic Style Transfer [26.657485176782934]
フォトリアリスティックなスタイル転送は、ある画像からのコンテンツが他の画像のスタイルに現れるように適応する際に、現実的な外観のイメージを合成するタスクである。
モダンモデルは、コンテンツイメージとスタイルイメージを記述する機能を融合した変換を組み込み、その結果の機能をスタイリングされたイメージにデコードする。
コンテントの保存量と注入スタイルの強度のバランスを制御できる汎用変換を導入する。
論文 参考訳(メタデータ) (2022-10-12T08:05:49Z) - Domain Enhanced Arbitrary Image Style Transfer via Contrastive Learning [84.8813842101747]
Contrastive Arbitrary Style Transfer (CAST) は、新しいスタイル表現学習法である。
本フレームワークは,スタイルコード符号化のための多層スタイルプロジェクタ,スタイル分布を効果的に学習するためのドメイン拡張モジュール,画像スタイル転送のための生成ネットワークという,3つのキーコンポーネントから構成される。
論文 参考訳(メタデータ) (2022-05-19T13:11:24Z) - Parameter-Free Style Projection for Arbitrary Style Transfer [64.06126075460722]
本稿では,パラメータフリー,高速,効果的なコンテンツスタイル変換のための特徴レベル変換手法であるStyle Projectionを提案する。
本稿では、任意の画像スタイルの転送にスタイル投影を利用するリアルタイムフィードフォワードモデルを提案する。
論文 参考訳(メタデータ) (2020-03-17T13:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。