論文の概要: Image First or Text First? Optimising the Sequencing of Modalities in Large Language Model Prompting and Reasoning Tasks
- arxiv url: http://arxiv.org/abs/2410.03062v1
- Date: Fri, 4 Oct 2024 00:55:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 04:06:08.346637
- Title: Image First or Text First? Optimising the Sequencing of Modalities in Large Language Model Prompting and Reasoning Tasks
- Title(参考訳): 画像ファーストかテキストファーストか? 大規模言語モデルにおけるモーダリティのシークエンシングの最適化と推論
- Authors: Grant Wardle, Teo Susnjak,
- Abstract要約: 本稿では,マルチモーダル内における画像とテキストのシークエンシングが,大規模言語モデル(LLM)の推論性能にどのように影響するかを検討する。
単一の画像を含む単純なタスクに対して、モダリティシークエンシングは精度に明確な影響を及ぼした。
複数の画像と複雑な推論ステップを含むより複雑なタスクでは、シークエンシングの効果が減少し、おそらくタスクの認知的要求が増大したためである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper examines how the sequencing of images and text within multi-modal prompts influences the reasoning performance of large language models (LLMs). We performed empirical evaluations using three commercial LLMs. Our results demonstrate that the order in which modalities are presented can significantly affect performance, particularly in tasks of varying complexity. For simpler tasks involving a single image, modality sequencing had a clear impact on accuracy. However, in more complex tasks involving multiple images and intricate reasoning steps, the effect of sequencing diminished, likely due to the increased cognitive demands of the task. Our findings also highlight the importance of question/prompt structure. In nested and multi-step reasoning tasks, modality sequencing played a key role in shaping model performance. While LLMs excelled in the initial stages of reasoning, they struggled to re-incorporate earlier information, underscoring the challenges of multi-hop reasoning within transformer architectures. This suggests that aligning the sequence of modalities with the logical flow of reasoning steps is more critical than modality order alone. These insights offer valuable implications for improving multi-modal prompt design, with broader applications across fields such as education, medical imaging, and cross-modal learning.
- Abstract(参考訳): 本稿では,マルチモーダル内の画像とテキストのシークエンシングが,大規模言語モデル(LLM)の推論性能にどのように影響するかを検討する。
3種類の商用LCMを用いて経験的評価を行った。
以上の結果から,モダリティが提示される順序は,特に複雑度が変化するタスクにおいて,性能に大きく影響を及ぼす可能性が示唆された。
単一の画像を含む単純なタスクに対して、モダリティシークエンシングは精度に明確な影響を及ぼした。
しかし、複数の画像と複雑な推論ステップを含むより複雑なタスクでは、シークエンシングの効果が減少し、おそらくタスクの認知的要求が増大したためである。
また,本研究は疑問/急激な構造の重要性も強調した。
ネストおよびマルチステップの推論タスクでは、モダリティシークエンシングがモデルパフォーマンスを形成する上で重要な役割を果たした。
LLMは推論の初期の段階では優れていたが、以前の情報の再編成に苦慮し、トランスフォーマーアーキテクチャにおけるマルチホップ推論の課題を浮き彫りにした。
このことは、モダリティの列と推論ステップの論理フローとの整合性は、モダリティ順序単独よりも重要であることを示唆している。
これらの知見は、教育、医用画像、クロスモーダル・ラーニングといった分野にまたがる幅広い応用によって、マルチモーダル・プロンプト・デザインを改善する上で重要な意味を持つ。
関連論文リスト
- Do Large Language Models Have Compositional Ability? An Investigation into Limitations and Scalability [12.349247962800813]
大規模言語モデル(LLM)は多くのAI問題に対する強力なツールとして登場した。
また、ICL(In-context Learning)機能も備えている。
複合的なタスクにどのようにアプローチするかは、未解明の未解決の問題のままである。
論文 参考訳(メタデータ) (2024-07-22T15:22:34Z) - Image-of-Thought Prompting for Visual Reasoning Refinement in Multimodal Large Language Models [14.765057045747753]
CoT(Chain-of-Thought)と関連する合理性に基づく研究は、複雑な推論タスクにおいて、LLM(Large Language Models)の性能を大幅に向上させた。
本稿では,MLLMの視覚的合理性を段階的に抽出する,IoT(Image-of-Thought)プロンプト手法を提案する。
IoTプロンプトは、さまざまなMLLMのさまざまな視覚的理解タスクにおいて、ゼロショットの視覚的推論性能を改善した。
論文 参考訳(メタデータ) (2024-05-22T17:56:51Z) - Cantor: Inspiring Multimodal Chain-of-Thought of MLLM [83.6663322930814]
視覚的コンテキスト獲得と論理的推論の集約は、視覚的推論タスクに取り組む上で重要であると我々は主張する。
我々はCantorと呼ばれる革新的なマルチモーダルCoTフレームワークを提案し、その特徴は知覚決定アーキテクチャである。
提案手法の有効性を実証し,マルチモーダルCoT性能の大幅な向上を示した。
論文 参考訳(メタデータ) (2024-04-24T17:59:48Z) - Self-Convinced Prompting: Few-Shot Question Answering with Repeated
Introspection [13.608076739368949]
本稿では,大規模事前学習型言語モデルの可能性を活用する新しいフレームワークを提案する。
我々のフレームワークは、典型的な数発の連鎖プロンプトの出力を処理し、応答の正しさを評価し、回答を精査し、最終的には新しい解を生成する。
論文 参考訳(メタデータ) (2023-10-08T06:36:26Z) - Faith and Fate: Limits of Transformers on Compositionality [109.79516190693415]
3つの代表的構成課題にまたがる変圧器大言語モデルの限界について検討する。
これらのタスクは、問題をサブステップに分割し、これらのステップを正確な答えに合成する必要があります。
実験結果から,多段階合成推論を線形化部分グラフマッチングに還元することにより,トランスフォーマーLLMが構成課題を解くことが示唆された。
論文 参考訳(メタデータ) (2023-05-29T23:24:14Z) - Enhancing Chain-of-Thoughts Prompting with Iterative Bootstrapping in Large Language Models [81.01397924280612]
大規模言語モデル (LLM) は、ステップ・バイ・ステップ・チェーン・オブ・シークレット (CoT) をデモンストレーションとして組み込むことで、様々な推論タスクにおいて高い効果的な性能を達成することができる。
本稿では,イターCoT (Iterative bootstrapping in Chain-of-Thoughts Prompting) を導入する。
論文 参考訳(メタデータ) (2023-04-23T13:54:39Z) - Active Prompting with Chain-of-Thought for Large Language Models [26.5029080638055]
本稿では,大規模言語モデルを異なるタスクに適応させる新しい手法であるActive-Promptを提案する。
不確実性に基づくアクティブラーニングの関連問題からアイデアを借用することにより、不確実性を特徴づける指標をいくつか導入する。
実験により,提案手法の優位性を実証し,8つの複雑な推論タスクの最先端化を図った。
論文 参考訳(メタデータ) (2023-02-23T18:58:59Z) - Task Formulation Matters When Learning Continually: A Case Study in
Visual Question Answering [58.82325933356066]
継続的な学習は、以前の知識を忘れずに、一連のタスクでモデルを漸進的にトレーニングすることを目的としている。
本稿では,視覚的質問応答において,異なる設定がパフォーマンスに与える影響について詳細に検討する。
論文 参考訳(メタデータ) (2022-09-30T19:12:58Z) - mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal
Skip-connections [104.14624185375897]
mPLUGは、クロスモーダルな理解と生成のための新しいビジョン言語基盤モデルである。
画像キャプション、画像テキスト検索、視覚的グラウンドリング、視覚的質問応答など、幅広い視覚言語下流タスクの最先端結果を達成する。
論文 参考訳(メタデータ) (2022-05-24T11:52:06Z) - CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented
Dialog Systems [56.302581679816775]
本稿では,タスク固有の命令でPLMを利用する包括的インストラクション(CINS)を提案する。
命令のスキーマ(定義、制約、プロンプト)と、ToDの3つの重要な下流タスクに対するカスタマイズされた実現を設計する。
これらのToDタスクに対して,小さな検証データを用いた現実的な数ショット学習シナリオで実験を行った。
論文 参考訳(メタデータ) (2021-09-10T03:23:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。