Precision, Stability, and Generalization: A Comprehensive Assessment of RNNs learnability capability for Classifying Counter and Dyck Languages
- URL: http://arxiv.org/abs/2410.03118v1
- Date: Fri, 4 Oct 2024 03:22:49 GMT
- Title: Precision, Stability, and Generalization: A Comprehensive Assessment of RNNs learnability capability for Classifying Counter and Dyck Languages
- Authors: Neisarg Dave, Daniel Kifer, Lee Giles, Ankur Mali,
- Abstract summary: This study investigates the learnability of Recurrent Neural Networks (RNNs) in classifying structured formal languages.
Traditionally, both first-order (LSTM) and second-order (O2RNN) RNNs have been considered effective for such tasks.
- Score: 9.400009043451046
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the learnability of Recurrent Neural Networks (RNNs) in classifying structured formal languages, focusing on counter and Dyck languages. Traditionally, both first-order (LSTM) and second-order (O2RNN) RNNs have been considered effective for such tasks, primarily based on their theoretical expressiveness within the Chomsky hierarchy. However, our research challenges this notion by demonstrating that RNNs primarily operate as state machines, where their linguistic capabilities are heavily influenced by the precision of their embeddings and the strategies used for sampling negative examples. Our experiments revealed that performance declines significantly as the structural similarity between positive and negative examples increases. Remarkably, even a basic single-layer classifier using RNN embeddings performed better than chance. To evaluate generalization, we trained models on strings up to a length of 40 and tested them on strings from lengths 41 to 500, using 10 unique seeds to ensure statistical robustness. Stability comparisons between LSTM and O2RNN models showed that O2RNNs generally offer greater stability across various scenarios. We further explore the impact of different initialization strategies revealing that our hypothesis is consistent with various RNNs. Overall, this research questions established beliefs about RNNs' computational capabilities, highlighting the importance of data structure and sampling techniques in assessing neural networks' potential for language classification tasks. It emphasizes that stronger constraints on expressivity are crucial for understanding true learnability, as mere expressivity does not capture the essence of learning.
Related papers
- Improving Neuron-level Interpretability with White-box Language Models [11.898535906016907]
We introduce a white-box transformer-like architecture named Coding RAte TransformEr (CRATE)
Our comprehensive experiments showcase significant improvements (up to 103% relative improvement) in neuron-level interpretability.
CRATE's increased interpretability comes from its enhanced ability to consistently and distinctively activate on relevant tokens.
arXiv Detail & Related papers (2024-10-21T19:12:33Z) - Cognitive Networks and Performance Drive fMRI-Based State Classification Using DNN Models [0.0]
We employ two structurally different and complementary DNN-based models to classify individual cognitive states.
We show that despite the architectural differences, both models consistently produce a robust relationship between prediction accuracy and individual cognitive performance.
arXiv Detail & Related papers (2024-08-14T15:25:51Z) - Provably Neural Active Learning Succeeds via Prioritizing Perplexing Samples [53.95282502030541]
Neural Network-based active learning (NAL) is a cost-effective data selection technique that utilizes neural networks to select and train on a small subset of samples.
We try to move one step forward by offering a unified explanation for the success of both query criteria-based NAL from a feature learning view.
arXiv Detail & Related papers (2024-06-06T10:38:01Z) - CARE: Certifiably Robust Learning with Reasoning via Variational
Inference [26.210129662748862]
We propose a certifiably robust learning with reasoning pipeline (CARE)
CARE achieves significantly higher certified robustness compared with the state-of-the-art baselines.
We additionally conducted different ablation studies to demonstrate the empirical robustness of CARE and the effectiveness of different knowledge integration.
arXiv Detail & Related papers (2022-09-12T07:15:52Z) - On the Intrinsic Structures of Spiking Neural Networks [66.57589494713515]
Recent years have emerged a surge of interest in SNNs owing to their remarkable potential to handle time-dependent and event-driven data.
There has been a dearth of comprehensive studies examining the impact of intrinsic structures within spiking computations.
This work delves deep into the intrinsic structures of SNNs, by elucidating their influence on the expressivity of SNNs.
arXiv Detail & Related papers (2022-06-21T09:42:30Z) - Knowledge Enhanced Neural Networks for relational domains [83.9217787335878]
We focus on a specific method, KENN, a Neural-Symbolic architecture that injects prior logical knowledge into a neural network.
In this paper, we propose an extension of KENN for relational data.
arXiv Detail & Related papers (2022-05-31T13:00:34Z) - Nearest Neighbor Zero-Shot Inference [68.56747574377215]
kNN-Prompt is a technique to use k-nearest neighbor (kNN) retrieval augmentation for zero-shot inference with language models (LMs)
fuzzy verbalizers leverage the sparse kNN distribution for downstream tasks by automatically associating each classification label with a set of natural language tokens.
Experiments show that kNN-Prompt is effective for domain adaptation with no further training, and that the benefits of retrieval increase with the size of the model used for kNN retrieval.
arXiv Detail & Related papers (2022-05-27T07:00:59Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Learning Hierarchical Structures with Differentiable Nondeterministic
Stacks [25.064819128982556]
We present a stack RNN model based on the recently proposed Nondeterministic Stack RNN (NS-RNN)
We show that the NS-RNN achieves lower cross-entropy than all previous stack RNNs on five context-free language modeling tasks.
We also propose a restricted version of the NS-RNN that makes it practical to use for language modeling on natural language.
arXiv Detail & Related papers (2021-09-05T03:25:23Z) - Path classification by stochastic linear recurrent neural networks [2.5499055723658097]
We show that RNNs retain a partial signature of the paths they are fed as the unique information exploited for training and classification tasks.
We argue that these RNNs are easy to train and robust and back these observations with numerical experiments on both synthetic and real data.
arXiv Detail & Related papers (2021-08-06T12:59:12Z) - Continual Learning in Recurrent Neural Networks [67.05499844830231]
We evaluate the effectiveness of continual learning methods for processing sequential data with recurrent neural networks (RNNs)
We shed light on the particularities that arise when applying weight-importance methods, such as elastic weight consolidation, to RNNs.
We show that the performance of weight-importance methods is not directly affected by the length of the processed sequences, but rather by high working memory requirements.
arXiv Detail & Related papers (2020-06-22T10:05:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.