論文の概要: Understanding Decision Subjects' Engagement with and Perceived Fairness of AI Models When Opportunities of Qualification Improvement Exist
- arxiv url: http://arxiv.org/abs/2410.03126v1
- Date: Fri, 4 Oct 2024 03:43:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:36:45.974911
- Title: Understanding Decision Subjects' Engagement with and Perceived Fairness of AI Models When Opportunities of Qualification Improvement Exist
- Title(参考訳): 資格改善の機会がある場合のAIモデルの公正性を考慮した意思決定者のエンゲージメントの理解
- Authors: Meric Altug Gemalmaz, Ming Yin,
- Abstract要約: 我々は、AIモデルの公平さが、モデルの公正さに対する人々の関与と認識にどのように影響するかを考察する。
意思決定対象の戦略的かつ反復的なAIモデルとの相互作用において、モデルの公平性は、モデルとのインタラクションや自己改善の意思を変えるものではないことがわかった。
意思決定の被験者は、グループに対して体系的にバイアスをかけると、AIモデルが公平でないと認識します。
- 参考スコア(独自算出の注目度): 18.457012200603355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore how an AI model's decision fairness affects people's engagement with and perceived fairness of the model if they are subject to its decisions, but could repeatedly and strategically respond to these decisions. Two types of strategic responses are considered -- people could determine whether to continue interacting with the model, and whether to invest in themselves to improve their chance of future favorable decisions from the model. Via three human-subject experiments, we found that in decision subjects' strategic, repeated interactions with an AI model, the model's decision fairness does not change their willingness to interact with the model or to improve themselves, even when the model exhibits unfairness on salient protected attributes. However, decision subjects still perceive the AI model to be less fair when it systematically biases against their group, especially if the difficulty of improving one's qualification for the favorable decision is larger for the lowly-qualified people.
- Abstract(参考訳): 我々は、AIモデルの公正さが、決定の対象である場合、モデルの公正さに対する人々の関与と認識にどのように影響するかを考察するが、これらの決定に対して繰り返し、戦略的に反応することができる。
モデルとの対話を継続するか、モデルから望ましい決定を下す可能性を改善するために自らに投資すべきか、という2つのタイプの戦略的な反応が検討されている。
3つの人-オブジェクト実験により、決定対象がAIモデルとの戦略的かつ反復的な相互作用において、モデルの公平性はモデルとの相互作用や自己改善の意思を変化させることはないことがわかった。
しかし、意思決定対象は、AIモデルがグループに対して体系的に偏見を抱く場合、特に、適度な判断の適格性を改善することの難しさが、低資格の人々にとってより大きい場合には、依然として公平でないと認識する。
関連論文リスト
- Towards Objective and Unbiased Decision Assessments with LLM-Enhanced Hierarchical Attention Networks [6.520709313101523]
本研究では,人的専門家による高い意思決定過程における認知バイアスの識別について検討する。
人間の判断を超越したバイアス対応AI拡張ワークフローを提案する。
実験では,提案モデルとエージェントワークフローの両方が,人間の判断と代替モデルの両方において有意に改善されている。
論文 参考訳(メタデータ) (2024-11-13T10:42:11Z) - Biased AI can Influence Political Decision-Making [64.9461133083473]
本稿では、AI言語モデルにおけるパルチザンバイアスが政治的意思決定に及ぼす影響について検討する。
政治的に偏見のあるモデルに晒された参加者は、意見を採用し、AIの偏見と一致した決定を下す可能性が著しく高いことがわかった。
論文 参考訳(メタデータ) (2024-10-08T22:56:00Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
AIによる意思決定において、人間はしばしばAIの提案を受動的にレビューし、それを受け入れるか拒否するかを決定する。
意思決定における人間-AIの意見の対立に関する議論と人間のリフレクションを促進する新しい枠組みであるHuman-AI Deliberationを提案する。
人間の熟考の理論に基づいて、この枠組みは人間とAIを次元レベルの意見の引用、熟考的議論、意思決定の更新に携わる。
論文 参考訳(メタデータ) (2024-03-25T14:34:06Z) - Decision Theoretic Foundations for Experiments Evaluating Human Decisions [18.27590643693167]
我々は、人間のパフォーマンスの損失をバイアスの形で評価するためには、合理的なエージェントが実用性を最大化する決定を識別する必要があるという情報を参加者に提供する必要があると論じる。
実演として,AIによる意思決定に関する文献からの意思決定の評価が,これらの基準をどの程度達成したかを評価する。
論文 参考訳(メタデータ) (2024-01-25T16:21:37Z) - Does More Advice Help? The Effects of Second Opinions in AI-Assisted
Decision Making [45.20615051119694]
我々は、AIによる意思決定における意思決定者の行動とパフォーマンスに第2の意見がどう影響するかを考察する。
AIモデルの推奨事項と第2の意見が常に一致している場合、意思決定者はAIに対する過度な信頼を減らすことができる。
もし意思決定者が、いつ仲間の第二の意見を求めるかを決めることができるならば、彼らの第二の意見の活発な勧誘は、AIに対する過度な信頼を緩和する可能性があることに気付く。
論文 参考訳(メタデータ) (2024-01-13T12:19:01Z) - Explaining by Imitating: Understanding Decisions by Interpretable Policy
Learning [72.80902932543474]
観察されたデータから人間の行動を理解することは、意思決定における透明性と説明責任にとって重要である。
意思決定者の方針をモデル化することが困難である医療などの現実的な設定を考えてみましょう。
本稿では, 設計による透明性の向上, 部分観測可能性の確保, 完全にオフラインで動作可能なデータ駆動型意思決定行動の表現を提案する。
論文 参考訳(メタデータ) (2023-10-28T13:06:14Z) - AI Reliance and Decision Quality: Fundamentals, Interdependence, and the Effects of Interventions [6.356355538824237]
私たちは、AIによる意思決定に関する現在の文献で、信頼と意思決定品質が不適切に混ざり合っていると論じています。
我々の研究は、AIによる意思決定における信頼行動と意思決定品質の区別の重要性を強調している。
論文 参考訳(メタデータ) (2023-04-18T08:08:05Z) - The Equity Framework: Fairness Beyond Equalized Predictive Outcomes [0.0]
意思決定者が物理的・社会的環境を描写するモデルから逸脱するモデルを使用すると生じる公平性の問題について検討する。
モデルへの平等なアクセス、モデルからの平等な結果、モデルの平等な利用を考慮に入れたEquity Frameworkを定式化する。
論文 参考訳(メタデータ) (2022-04-18T20:49:51Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Characterizing Fairness Over the Set of Good Models Under Selective
Labels [69.64662540443162]
同様の性能を実現するモデルセットに対して,予測公正性を特徴付けるフレームワークを開発する。
到達可能なグループレベルの予測格差の範囲を計算するためのトラクタブルアルゴリズムを提供します。
選択ラベル付きデータの実証的な課題に対処するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2021-01-02T02:11:37Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
ケース固有のモデル情報を明らかにする特徴が、信頼度を調整し、人間とAIのジョイントパフォーマンスを向上させることができるかどうかを検討する。
信頼スコアは、AIモデルに対する人々の信頼を校正するのに役立ちますが、信頼の校正だけでは、AI支援による意思決定を改善するには不十分です。
論文 参考訳(メタデータ) (2020-01-07T15:33:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。