論文の概要: Exploring Learnability in Memory-Augmented Recurrent Neural Networks: Precision, Stability, and Empirical Insights
- arxiv url: http://arxiv.org/abs/2410.03154v1
- Date: Fri, 4 Oct 2024 05:29:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:24:16.262015
- Title: Exploring Learnability in Memory-Augmented Recurrent Neural Networks: Precision, Stability, and Empirical Insights
- Title(参考訳): メモリ拡張リカレントニューラルネットワークにおける学習可能性の探索:精度,安定性,経験的考察
- Authors: Shrabon Das, Ankur Mali,
- Abstract要約: 本研究では,Pushdown Automataと理論的に等価であるメモリレスおよびメモリ拡張RNNの学習可能性について検討する。
完全にトレーニングされたコンポーネントフリーズモデルの実験では、メモリコンポーネントの凍結によりパフォーマンスが大幅に向上した。
- 参考スコア(独自算出の注目度): 2.1485350418225244
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study explores the learnability of memory-less and memory-augmented RNNs, which are theoretically equivalent to Pushdown Automata. Empirical results show that these models often fail to generalize on longer sequences, relying more on precision than mastering symbolic grammar. Experiments on fully trained and component-frozen models reveal that freezing the memory component significantly improves performance, achieving state-of-the-art results on the Penn Treebank dataset (test perplexity reduced from 123.5 to 120.5). Models with frozen memory retained up to 90% of initial performance on longer sequences, compared to a 60% drop in standard models. Theoretical analysis suggests that freezing memory stabilizes temporal dependencies, leading to robust convergence. These findings stress the need for stable memory designs and long-sequence evaluations to understand RNNs true learnability limits.
- Abstract(参考訳): 本研究では,Pushdown Automataと理論的に等価であるメモリレスおよびメモリ拡張RNNの学習可能性について検討する。
経験的な結果から、これらのモデルは記号文法を習得するよりも精度に頼って、長い列の一般化に失敗することが多い。
完全トレーニングおよびコンポーネント凍結モデルの実験により、メモリコンポーネントの凍結はパフォーマンスを著しく向上し、Penn Treebankデータセット(テストパープレキシティを123.5から120.5に削減した)で最先端の結果が得られた。
凍結メモリを持つモデルでは、通常のモデルでは60%減少するのに対して、より長いシーケンスで初期性能の90%を保った。
理論的解析は、凍結記憶が時間的依存を安定化させ、堅牢な収束をもたらすことを示唆している。
これらの知見は、RNNの真の学習可能性限界を理解するために、安定したメモリ設計と長いシーケンス評価の必要性を強調している。
関連論文リスト
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
現在のディープラーニングメモリモデルは、部分的に観察可能で長期にわたる強化学習環境で苦労している。
本稿では,強化学習エージェントのための新しい記憶モデルであるStable Hadamard Memoryを紹介する。
我々の手法は、部分的に観測可能なベンチマークに挑戦する上で、最先端のメモリベースの手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T03:50:17Z) - Mathematical Formalism for Memory Compression in Selective State Space Models [0.0]
状態空間モデル(SSM)は、シーケンスデータの長距離依存性をモデル化するための強力なフレームワークとして登場した。
我々は、選択状態空間モデルにおけるメモリ圧縮を理解するための厳密な数学的枠組みを開発する。
選択型SSMは従来のRNNモデルと比較してメモリ効率と処理速度を大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-10-04T05:45:48Z) - Causal Estimation of Memorisation Profiles [58.20086589761273]
言語モデルにおける記憶の理解は、実践的および社会的意味を持つ。
覚書化(英: Memorisation)とは、モデルがそのインスタンスを予測できる能力に対して、あるインスタンスでトレーニングを行うことによる因果的影響である。
本稿では,計量学の差分差分設計に基づく,新しい,原理的,効率的な記憶推定法を提案する。
論文 参考訳(メタデータ) (2024-06-06T17:59:09Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
連続時間自己回帰リカレントニューラルネットワーク(Continuous Time Autoregressive Recurrent Neural Network, CTRNN)は、不規則な観測を考慮に入れたディープラーニングモデルである。
重篤なケア環境下での血糖値の確率予測へのこれらのモデルの適用を実証する。
論文 参考訳(メタデータ) (2023-04-14T09:39:06Z) - ResMem: Learn what you can and memorize the rest [79.19649788662511]
本稿では,既存の予測モデルを拡張するための残差記憶アルゴリズム(ResMem)を提案する。
構築によって、ResMemはトレーニングラベルを明示的に記憶することができる。
ResMemは、元の予測モデルのテストセットの一般化を一貫して改善することを示す。
論文 参考訳(メタデータ) (2023-02-03T07:12:55Z) - Selective Memory Recursive Least Squares: Recast Forgetting into Memory
in RBF Neural Network Based Real-Time Learning [2.31120983784623]
放射ベース関数ニューラルネットワーク(RBFNN)に基づくリアルタイム学習タスクでは、忘れるメカニズムが広く使用されている。
本稿では,従来の記憶機構を記憶機構に再キャストする選択記憶再帰最小二乗法(SMRLS)を提案する。
SMRLSでは、RBFNNの入力空間を有限個の分割に均等に分割し、各分割から合成されたサンプルを用いて合成目的関数を開発する。
論文 参考訳(メタデータ) (2022-11-15T05:29:58Z) - On the Memory Mechanism of Tensor-Power Recurrent Models [25.83531612758211]
TPリカレントモデルの記憶機構について検討する。
長期記憶効果を達成するためには, p が重要条件であることが示される。
新しいモデルは、安定して長いメモリ効果の恩恵を受けることが期待されている。
論文 参考訳(メタデータ) (2021-03-02T07:07:47Z) - Automatic Recall Machines: Internal Replay, Continual Learning and the
Brain [104.38824285741248]
ニューラルネットワークのリプレイには、記憶されたサンプルを使ってシーケンシャルなデータのトレーニングが含まれる。
本研究では,これらの補助サンプルをフライ時に生成する手法を提案する。
代わりに、評価されたモデル自体内の学習したサンプルの暗黙の記憶が利用されます。
論文 参考訳(メタデータ) (2020-06-22T15:07:06Z) - Recognizing Long Grammatical Sequences Using Recurrent Networks
Augmented With An External Differentiable Stack [73.48927855855219]
リカレントニューラルネットワーク(RNN)は、シーケンスモデリング、生成、予測に広く使われているディープアーキテクチャである。
RNNは、非常に長いシーケンスに対してあまり一般化せず、多くの重要な時間的処理や時系列予測問題に適用性を制限する。
これらの欠点に対処する方法の1つは、スタックのような外部の異なるメモリ構造とRNNを結合することである。
本稿では,重要なアーキテクチャと状態更新機構を備えたメモリ拡張RNNを改良する。
論文 参考訳(メタデータ) (2020-04-04T14:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。