Mathematical Formalism for Memory Compression in Selective State Space Models
- URL: http://arxiv.org/abs/2410.03158v1
- Date: Fri, 4 Oct 2024 05:45:48 GMT
- Title: Mathematical Formalism for Memory Compression in Selective State Space Models
- Authors: Siddhanth Bhat,
- Abstract summary: State space models (SSMs) have emerged as a powerful framework for modelling long-range dependencies in sequence data.
We develop a rigorous mathematical framework for understanding memory compression in selective state space models.
We show that selective SSMs offer significant improvements in memory efficiency and processing speed compared to traditional RNN-based models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: State space models (SSMs) have emerged as a powerful framework for modelling long-range dependencies in sequence data. Unlike traditional recurrent neural networks (RNNs) and convolutional neural networks (CNNs), SSMs offer a structured and stable approach to sequence modelling, leveraging principles from control theory and dynamical systems. However, a key challenge in sequence modelling is compressing long-term dependencies into a compact hidden state representation without losing critical information. In this paper, we develop a rigorous mathematical framework for understanding memory compression in selective state space models. We introduce a selective gating mechanism that dynamically filters and updates the hidden state based on input relevance, allowing for efficient memory compression. We formalize the trade-off between memory efficiency and information retention using information-theoretic tools, such as mutual information and rate-distortion theory. Our analysis provides theoretical bounds on the amount of information that can be compressed without sacrificing model performance. We also derive theorems that prove the stability and convergence of the hidden state in selective SSMs, ensuring reliable long-term memory retention. Computational complexity analysis reveals that selective SSMs offer significant improvements in memory efficiency and processing speed compared to traditional RNN-based models. Through empirical validation on sequence modelling tasks such as time-series forecasting and natural language processing, we demonstrate that selective SSMs achieve state-of-the-art performance while using less memory and computational resources.
Related papers
- DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - Geometric sparsification in recurrent neural networks [0.8851237804522972]
We propose a new technique for sparsification of recurrent neural nets (RNNs) called moduli regularization.
We show that moduli regularization induces more stable RNNs with a variety of moduli regularizers, and achieves high fidelity models at 98% sparsity.
arXiv Detail & Related papers (2024-06-10T14:12:33Z) - Theoretical Foundations of Deep Selective State-Space Models [13.971499161967083]
Deep SSMs demonstrate outstanding performance across a diverse set of domains.
Recent developments show that if the linear recurrence powering SSMs allows for multiplicative interactions between inputs and hidden states.
We show that when random linear recurrences are equipped with simple input-controlled transitions, then the hidden state is provably a low-dimensional projection of a powerful mathematical object.
arXiv Detail & Related papers (2024-02-29T11:20:16Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
We introduce a novel heterogeneous memory augmentation approach for neural networks.
By introducing learnable memory tokens with attention mechanism, we can effectively boost performance without huge computational overhead.
We show our approach on various image and graph-based tasks under both in-distribution (ID) and out-of-distribution (OOD) conditions.
arXiv Detail & Related papers (2023-10-17T01:05:28Z) - Understanding Self-attention Mechanism via Dynamical System Perspective [58.024376086269015]
Self-attention mechanism (SAM) is widely used in various fields of artificial intelligence.
We show that intrinsic stiffness phenomenon (SP) in the high-precision solution of ordinary differential equations (ODEs) also widely exists in high-performance neural networks (NN)
We show that the SAM is also a stiffness-aware step size adaptor that can enhance the model's representational ability to measure intrinsic SP.
arXiv Detail & Related papers (2023-08-19T08:17:41Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
We take a closer theoretical look at Independent Subnetwork Training (IST)
IST is a recently proposed and highly effective technique for solving the aforementioned problems.
We identify fundamental differences between IST and alternative approaches, such as distributed methods with compressed communication.
arXiv Detail & Related papers (2023-06-28T18:14:22Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - A Framework for Machine Learning of Model Error in Dynamical Systems [7.384376731453594]
We present a unifying framework for blending mechanistic and machine-learning approaches to identify dynamical systems from data.
We cast the problem in both continuous- and discrete-time, for problems in which the model error is memoryless and in which it has significant memory.
We find that hybrid methods substantially outperform solely data-driven approaches in terms of data hunger, demands for model complexity, and overall predictive performance.
arXiv Detail & Related papers (2021-07-14T12:47:48Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - On the Memory Mechanism of Tensor-Power Recurrent Models [25.83531612758211]
We investigate the memory mechanism of TP recurrent models.
We show that a large degree p is an essential condition to achieve the long memory effect.
New model is expected to benefit from the long memory effect in a stable manner.
arXiv Detail & Related papers (2021-03-02T07:07:47Z) - Neural Closure Models for Dynamical Systems [35.000303827255024]
We develop a novel methodology to learn non-Markovian closure parameterizations for low-fidelity models.
New "neural closure models" augment low-fidelity models with neural delay differential equations (nDDEs)
We show that using non-Markovian over Markovian closures improves long-term accuracy and requires smaller networks.
arXiv Detail & Related papers (2020-12-27T05:55:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.