Generating bilingual example sentences with large language models as lexicography assistants
- URL: http://arxiv.org/abs/2410.03182v2
- Date: Tue, 19 Nov 2024 05:57:28 GMT
- Title: Generating bilingual example sentences with large language models as lexicography assistants
- Authors: Raphael Merx, Ekaterina Vylomova, Kemal Kurniawan,
- Abstract summary: We present a study of LLMs' performance in generating and rating example sentences for bilingual dictionaries across languages with varying resource levels.
We evaluate the quality of LLM-generated examples against the GDEX (Good Dictionary EXample) criteria: typicality, informativeness, and intelligibility.
- Score: 2.6550899846546527
- License:
- Abstract: We present a study of LLMs' performance in generating and rating example sentences for bilingual dictionaries across languages with varying resource levels: French (high-resource), Indonesian (mid-resource), and Tetun (low-resource), with English as the target language. We evaluate the quality of LLM-generated examples against the GDEX (Good Dictionary EXample) criteria: typicality, informativeness, and intelligibility. Our findings reveal that while LLMs can generate reasonably good dictionary examples, their performance degrades significantly for lower-resourced languages. We also observe high variability in human preferences for example quality, reflected in low inter-annotator agreement rates. To address this, we demonstrate that in-context learning can successfully align LLMs with individual annotator preferences. Additionally, we explore the use of pre-trained language models for automated rating of examples, finding that sentence perplexity serves as a good proxy for typicality and intelligibility in higher-resourced languages. Our study also contributes a novel dataset of 600 ratings for LLM-generated sentence pairs, and provides insights into the potential of LLMs in reducing the cost of lexicographic work, particularly for low-resource languages.
Related papers
- On Limitations of LLM as Annotator for Low Resource Languages [0.4194295877935868]
Low-resource languages face significant challenges due to the lack of sufficient linguistic data, resources, and tools for tasks such as supervised learning, annotation, and classification.
This shortage hinders the development of accurate models and datasets, making it difficult to perform critical NLP tasks like sentiment analysis or hate speech detection.
To bridge this gap, Large Language Models (LLMs) present an opportunity for potential annotators, capable of generating datasets and resources for these underrepresented languages.
arXiv Detail & Related papers (2024-11-26T17:55:37Z) - Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
Cross-lingual summarization ( CLS) aims to generate a summary for the source text in a different target language.
Currently, instruction-tuned large language models (LLMs) excel at various English tasks.
Recent studies have shown that LLMs' performance on CLS tasks remains unsatisfactory even with few-shot settings.
arXiv Detail & Related papers (2024-10-26T00:39:44Z) - Shortcomings of LLMs for Low-Resource Translation: Retrieval and Understanding are Both the Problem [4.830018386227]
This work investigates the in-context learning abilities of pretrained large language models (LLMs) when instructed to translate text from a low-resource language into a high-resource language as part of an automated machine translation pipeline.
We conduct a set of experiments translating Southern Quechua to Spanish and examine the informativity of various types of context retrieved from a constrained database of digitized pedagogical materials and parallel corpora.
arXiv Detail & Related papers (2024-06-21T20:02:22Z) - Quantifying Multilingual Performance of Large Language Models Across Languages [48.40607157158246]
Large Language Models (LLMs) perform better on high-resource languages like English, German, and French, while their capabilities in low-resource languages remain inadequate.
We propose the Language Ranker, an intrinsic metric designed to benchmark and rank languages based on LLM performance using internal representations.
Our analysis reveals that high-resource languages exhibit higher similarity scores with English, demonstrating superior performance, while low-resource languages show lower similarity scores.
arXiv Detail & Related papers (2024-04-17T16:53:16Z) - LLMs Are Few-Shot In-Context Low-Resource Language Learners [59.74451570590808]
In-context learning (ICL) empowers large language models (LLMs) to perform diverse tasks in underrepresented languages.
We extensively study ICL and its cross-lingual variation (X-ICL) on 25 low-resource and 7 relatively higher-resource languages.
Our study concludes the significance of few-shot in-context information on enhancing the low-resource understanding quality of LLMs.
arXiv Detail & Related papers (2024-03-25T07:55:29Z) - High-quality Data-to-Text Generation for Severely Under-Resourced
Languages with Out-of-the-box Large Language Models [5.632410663467911]
We explore the extent to which pretrained large language models (LLMs) can bridge the performance gap for under-resourced languages.
We find that LLMs easily set the state of the art for the under-resourced languages by substantial margins.
For all our languages, human evaluation shows on-a-par performance with humans for our best systems, but BLEU scores collapse compared to English.
arXiv Detail & Related papers (2024-02-19T16:29:40Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
We investigate how large language models (LLMs) function as rerankers in cross-lingual information retrieval systems for African languages.
Our implementation covers English and four African languages (Hausa, Somali, Swahili, and Yoruba)
We examine cross-lingual reranking with queries in English and passages in the African languages.
arXiv Detail & Related papers (2023-12-26T18:38:54Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
Large language models (LLMs) are known to effectively perform tasks by simply observing few exemplars.
We propose to assemble synthetic exemplars from a diverse set of high-resource languages to prompt the LLMs to translate from any language into English.
Our unsupervised prompting method performs on par with supervised few-shot learning in LLMs of different sizes for translations between English and 13 Indic and 21 African low-resource languages.
arXiv Detail & Related papers (2023-06-20T08:27:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.