論文の概要: Research Directions for Verifiable Crypto-Physically Secure TEEs
- arxiv url: http://arxiv.org/abs/2410.03183v1
- Date: Tue, 8 Oct 2024 17:22:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:14:31.055840
- Title: Research Directions for Verifiable Crypto-Physically Secure TEEs
- Title(参考訳): 暗号物理安全TEEの検証研究の方向性
- Authors: Sylvain Bellemare,
- Abstract要約: Web3アプリケーションは、ハードウェアベースのTEEの信頼できる保護者として機能するために、クラウドのインフラに依存する必要があります。
この研究は、物理的な攻撃に対してセキュアなチップを設計して実装する方法を模索することを目的としています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A niche corner of the Web3 world is increasingly making use of hardware-based Trusted Execution Environments (TEEs) to build decentralized infrastructure. One of the motivations to use TEEs is to go beyond the current performance limitations of cryptography-based alternatives such as zero-knowledge proofs (ZKP), fully homomorphic encryption (FHE), and multi-party computation (MPC). Despite their appealing advantages, current TEEs suffer from serious limitations as they are not secure against physical attacks, and their attestation mechanism is rooted in the chip manufacturer's trust. As a result, Web3 applications have to rely on cloud infrastruture to act as trusted guardians of hardware-based TEEs and have to accept to trust chip manufacturers. This work aims at exploring how we could potentially architect and implement chips that would be secure against physical attacks and would not require putting trust in chip manufacturers. One goal of this work is to motivate the Web3 movement to acknowledge and leverage the substantial amount of relevant hardware research that already exists. In brief, a combination of: (1) physical unclonable functions (PUFs) to secure the root-of-trust; (2) masking and redundancy techniques to secure computations; (3) open source hardware and imaging techniques to verify that a chip matches its expected design; can help move towards attesting that a given TEE can be trusted without the need to trust a cloud provider and a chip manufacturer.
- Abstract(参考訳): Web3の世界でニッチなコーナーは、ハードウェアベースのTrusted Execution Environments(TEEs)を使って分散インフラストラクチャを構築している。
TEEを使用する動機の1つは、ゼロ知識証明(ZKP)、完全同型暗号(FHE)、マルチパーティ計算(MPC)など、暗号ベースの代替手段の現在の性能制限を超えることである。
魅力的な優位性にもかかわらず、現在のTEEは物理的な攻撃に対して安全でないため深刻な制限を被り、その証明機構はチップメーカーの信頼に根ざしている。
結果として、Web3アプリケーションは、ハードウェアベースのTEEの信頼できる保護者として振る舞うために、クラウドのインフラに依存し、信頼できるチップメーカーを受け入れる必要がある。
この研究は、物理的攻撃に対して安全であり、チップメーカーへの信頼を必要としないチップを設計し、実装する方法を模索することを目的としている。
この研究の1つの目標は、Web3ムーブメントを動機付け、すでに存在する相当量の関連するハードウェア研究を認識し、活用することである。
簡単に言うと、(1)信頼の根元を確保するための物理的非拘束機能(PUF)、(2)計算の確保のためのマスキングと冗長性技術、(3)チップが期待する設計と一致することを検証するためのオープンソースのハードウェアとイメージング技術、そして、クラウドプロバイダやチップメーカーを信頼することなく、特定のTEEが信頼できることを証明する上での助けとなる。
関連論文リスト
- Domain-Agnostic Hardware Fingerprinting-Based Device Identifier for Zero-Trust IoT Security [7.8344795632171325]
次世代ネットワークは、人間、機械、デバイス、システムをシームレスに相互接続することを目的としている。
この課題に対処するため、Zero Trust(ZT)パラダイムは、ネットワークの完全性とデータの機密性を保護するための重要な方法として登場した。
この研究は、新しいディープラーニングベースの無線デバイス識別フレームワークであるEPS-CNNを導入している。
論文 参考訳(メタデータ) (2024-02-08T00:23:42Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
信頼性コンピューティングは、Trusted Execution Environments(TEEs)と呼ばれる特別なハードウェア隔離ユニットを使用して、コテナントクラウドデプロイメントにおける機密コードとデータの保護を可能にする。
低レベルのC/C++ベースのツールチェーンを提供するTEEは、固有のメモリ安全性の脆弱性の影響を受けやすく、明示的で暗黙的な情報フローのリークを監視するための言語構造が欠如している。
私たちは、Haskellに埋め込まれたドメイン固有言語(cla)であるHasTEE+を使って、上記の問題に対処します。
論文 参考訳(メタデータ) (2024-01-17T00:56:23Z) - DynamiQS: Quantum Secure Authentication for Dynamic Charging of Electric Vehicles [61.394095512765304]
Dynamic Wireless Power Transfer (DWPT)は、電気自動車を運転中に充電できる新しい技術である。
量子コンピューティングの最近の進歩は、古典的な公開鍵暗号を危険にさらしている。
動的ワイヤレス充電のための第1量子後セキュア認証プロトコルであるDynamiQSを提案する。
論文 参考訳(メタデータ) (2023-12-20T09:40:45Z) - Blockchain-based Zero Trust on the Edge [5.323279718522213]
本稿では,ブロックチェーンに拡張されたゼロトラストアーキテクチャ(ZTA)に基づく新たなアプローチを提案し,セキュリティをさらに強化する。
ブロックチェーンコンポーネントは、ユーザの要求を格納するための不変データベースとして機能し、潜在的に悪意のあるユーザアクティビティを分析して識別することで、信頼性を検証するために使用される。
スマートシティにおけるその実現可能性と適用性を検証するために,テストベッド上で実施したフレームワーク,アプローチのプロセス,実験について論じる。
論文 参考訳(メタデータ) (2023-11-28T12:43:21Z) - Tamper-Evident Pairing [55.2480439325792]
Tamper-Evident Pairing (TEP)はPush-ButtonConfiguration (PBC)標準の改良である。
TEP は Tamper-Evident Announcement (TEA) に依存しており、相手が送信されたメッセージを検出せずに改ざんしたり、メッセージが送信された事実を隠蔽したりすることを保証している。
本稿では,その動作を理解するために必要なすべての情報を含む,TEPプロトコルの概要について概説する。
論文 参考訳(メタデータ) (2023-11-24T18:54:00Z) - RIPencapsulation: Defeating IP Encapsulation on TI MSP Devices [6.4241197750493475]
本稿では,MSP430 デバイスと MSP432 デバイス向けにテキサス・インスツルメンツが展開した TEE である IP Encapsulation (IPE) の2つの根本的な弱点を明らかにする。
RIPencapsulationと呼ばれる攻撃を実装しており、IPE内でコードの一部を実行し、レジスタファイルから明らかになった部分状態を使って秘密データを抽出する。
論文 参考訳(メタデータ) (2023-10-25T08:00:59Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
本稿では,SOCIの性能を大幅に向上させるSOCI+を提案する。
SOCI+は、暗号プリミティブとして、高速な暗号化と復号化を備えた(2, 2)ホールドのPaillier暗号システムを採用している。
実験の結果,SOCI+は計算効率が最大5.4倍,通信オーバヘッドが40%少ないことがわかった。
論文 参考訳(メタデータ) (2023-09-27T05:19:32Z) - SyzTrust: State-aware Fuzzing on Trusted OS Designed for IoT Devices [67.65883495888258]
我々は、リソース制限されたTrusted OSのセキュリティを検証するための、最初の状態認識ファジィフレームワークであるSyzTrustを紹介する。
SyzTrustはハードウェア支援フレームワークを採用し、IoTデバイス上でTrusted OSを直接ファジングできるようにする。
我々は、Samsung、Tsinglink Cloud、Ali Cloudの3つの主要なベンダーからSyzTrust on Trusted OSを評価した。
論文 参考訳(メタデータ) (2023-09-26T08:11:38Z) - Building Your Own Trusted Execution Environments Using FPGA [16.206300249987354]
BYOTee(Build Your Own Trusted Execution Environments)は、複数のセキュアなエンクレーブを構築するための、使いやすいインフラである。
BYOTeeは、FPGAの要求に応じて、ソフトコアCPU、ブロックRAM、周辺接続を含むカスタマイズされたハードウェアTCBでエンクレーブを作成する。
論文 参考訳(メタデータ) (2022-03-08T17:22:52Z) - Regulation conform DLT-operable payment adapter based on trustless -
justified trust combined generalized state channels [77.34726150561087]
物の経済(EoT)は、ピアツーピアの信頼性のないネットワークで動作するソフトウェアエージェントに基づいています。
基本的価値と技術的可能性が異なる現在のソリューションの概要を述べる。
我々は,暗号ベースの分散型の信頼できない要素の強みと,確立された,十分に規制された支払い手段を組み合わせることを提案する。
論文 参考訳(メタデータ) (2020-07-03T10:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。