論文の概要: Zero-Trust Foundation Models: A New Paradigm for Secure and Collaborative Artificial Intelligence for Internet of Things
- arxiv url: http://arxiv.org/abs/2505.23792v1
- Date: Mon, 26 May 2025 06:44:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.50145
- Title: Zero-Trust Foundation Models: A New Paradigm for Secure and Collaborative Artificial Intelligence for Internet of Things
- Title(参考訳): Zero-Trust Foundation Models:モノのインターネットのためのセキュアで協調的な人工知能のための新しいパラダイム
- Authors: Kai Li, Conggai Li, Xin Yuan, Shenghong Li, Sai Zou, Syed Sohail Ahmed, Wei Ni, Dusit Niyato, Abbas Jamalipour, Falko Dressler, Ozgur B. Akan,
- Abstract要約: Zero-Trust Foundation Models (ZTFM)は、ゼロトラストセキュリティの原則をIoT(Internet of Things)システムの基盤モデル(FM)のライフサイクルに組み込む。
ZTFMは、分散、異質、潜在的に敵対的なIoT環境にわたって、セキュアでプライバシ保護のAIを可能にする。
- 参考スコア(独自算出の注目度): 61.43014629640404
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper focuses on Zero-Trust Foundation Models (ZTFMs), a novel paradigm that embeds zero-trust security principles into the lifecycle of foundation models (FMs) for Internet of Things (IoT) systems. By integrating core tenets, such as continuous verification, least privilege access (LPA), data confidentiality, and behavioral analytics into the design, training, and deployment of FMs, ZTFMs can enable secure, privacy-preserving AI across distributed, heterogeneous, and potentially adversarial IoT environments. We present the first structured synthesis of ZTFMs, identifying their potential to transform conventional trust-based IoT architectures into resilient, self-defending ecosystems. Moreover, we propose a comprehensive technical framework, incorporating federated learning (FL), blockchain-based identity management, micro-segmentation, and trusted execution environments (TEEs) to support decentralized, verifiable intelligence at the network edge. In addition, we investigate emerging security threats unique to ZTFM-enabled systems and evaluate countermeasures, such as anomaly detection, adversarial training, and secure aggregation. Through this analysis, we highlight key open research challenges in terms of scalability, secure orchestration, interpretable threat attribution, and dynamic trust calibration. This survey lays a foundational roadmap for secure, intelligent, and trustworthy IoT infrastructures powered by FMs.
- Abstract(参考訳): 本稿では、ゼロトラスト基礎モデル(ZTFM)に焦点を当て、ゼロトラストセキュリティの原則をIoT(Internet of Things)システムのための基盤モデル(FM)のライフサイクルに組み込む新しいパラダイムである。
継続的検証、最小特権アクセス(LPA)、データ機密性、行動分析をFMの設計、トレーニング、デプロイに統合することにより、ZTFMは分散、異種、潜在的に敵対的なIoT環境にわたるセキュアでプライバシ保護のAIを可能にする。
ZTFMを初めて構造化し、従来の信頼に基づくIoTアーキテクチャをレジリエントで自己防衛的なエコシステムに転換する可能性を特定する。
さらに,フェデレートラーニング(FL),ブロックチェーンベースのID管理,マイクロセグメンテーション,信頼された実行環境(TEE)を組み込んだ総合的な技術フレームワークを提案し,ネットワークエッジにおける分散型で検証可能なインテリジェンスをサポートする。
また,ZTFM対応システムに特有の新たなセキュリティ脅威について検討し,異常検出や対人訓練,セキュアアグリゲーションなどの対策について検討した。
この分析を通じて、スケーラビリティ、セキュアなオーケストレーション、解釈可能な脅威属性、動的信頼キャリブレーションの観点から、重要なオープンリサーチ課題を強調します。
この調査では、FMを使用したセキュアでインテリジェントで信頼性の高いIoTインフラストラクチャのロードマップを公開している。
関連論文リスト
- Federated Learning-Enhanced Blockchain Framework for Privacy-Preserving Intrusion Detection in Industrial IoT [0.0]
産業用IoT(Industrial Internet of Things, IIoT)システムはスマートマニュファクチャリングに不可欠なものになっています。
従来の侵入検知システム(IDS)は、データプライバシやレイテンシ、単一障害点に対する懸念を高める集中型アーキテクチャに依存することが多い。
我々は、IIoT環境に適したプライバシー保護侵入検知のための新しいFederated Learning-Enhanced Framework(FL-BCID)を提案する。
論文 参考訳(メタデータ) (2025-05-21T11:11:44Z) - On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [334.48358909967845]
Generative Foundation Models (GenFMs) がトランスフォーメーションツールとして登場した。
彼らの広く採用されていることは、次元の信頼に関する重要な懸念を提起する。
本稿では,3つの主要なコントリビューションを通じて,これらの課題に対処するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2025-02-20T06:20:36Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
MFM(Multimodal foundation model)は、人工知能の大幅な進歩を表す。
本稿では,マルチモーダル学習におけるサイバーセーフティとサイバーセキュリティを概念化する。
我々は、これらの概念をMFMに統一し、重要な脅威を特定するための総合的知識体系化(SoK)を提案する。
論文 参考訳(メタデータ) (2024-11-17T23:06:20Z) - Robust Zero Trust Architecture: Joint Blockchain based Federated learning and Anomaly Detection based Framework [17.919501880326383]
本稿では,IoTネットワーク内の効率的なリモートワークとコラボレーションを支援する分散システムに適した,堅牢なゼロトラストアーキテクチャ(ZTA)を紹介する。
ブロックチェーンベースのフェデレーション学習原則を使用することで、当社のフレームワークは、漏洩したクライアントからの悪意のある更新を防止すべく、堅牢な集約メカニズムを備えている。
このフレームワークは異常検出と信頼計算を統合し、セキュアで信頼性の高いデバイスコラボレーションを分散的に保証する。
論文 参考訳(メタデータ) (2024-06-24T23:15:19Z) - Securing Federated Learning with Control-Flow Attestation: A Novel Framework for Enhanced Integrity and Resilience against Adversarial Attacks [2.28438857884398]
分散機械学習パラダイムとしてのフェデレートラーニング(FL)は、新たなサイバーセキュリティ課題を導入した。
本研究では,従来サイバーセキュリティに用いられてきた制御フロー(CFA)機構にインスパイアされた,革新的なセキュリティフレームワークを提案する。
我々は、ネットワーク全体にわたるモデル更新の完全性を認証し、検証し、モデル中毒や敵対的干渉に関連するリスクを効果的に軽減する。
論文 参考訳(メタデータ) (2024-03-15T04:03:34Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Zero Trust: Applications, Challenges, and Opportunities [0.0]
この調査は、ゼロトラストの理論的基礎、実践的実装、応用、課題、今後のトレンドを包括的に調査する。
クラウド環境の保護、リモートワークの促進、IoT(Internet of Things)エコシステムの保護におけるZero Trustの意義を強調します。
Zero TrustをAIや機械学習といった新興技術と統合することは、その有効性を高め、動的で応答性のあるセキュリティの展望を約束する。
論文 参考訳(メタデータ) (2023-09-07T09:23:13Z) - HBFL: A Hierarchical Blockchain-based Federated Learning Framework for a
Collaborative IoT Intrusion Detection [0.0]
セキュアでプライバシ保護されたコラボレーティブなIoT侵入検出を実現するために,階層的なブロックチェーンベースのフェデレーション学習フレームワークを提案する。
MLベースの侵入検出フレームワークの提案は、学習プロセスと組織データのプライバシを確保するために、階層的なフェデレーション付き学習アーキテクチャに従っている。
その結果は、データプライバシを保持しながら、広範囲の悪意あるアクティビティを検出できる、セキュアに設計されたMLベースの侵入検知システムである。
論文 参考訳(メタデータ) (2022-04-08T19:06:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。