論文の概要: Parallel Corpus Augmentation using Masked Language Models
- arxiv url: http://arxiv.org/abs/2410.03194v1
- Date: Fri, 4 Oct 2024 07:15:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-03 03:04:24.999756
- Title: Parallel Corpus Augmentation using Masked Language Models
- Title(参考訳): マスク言語モデルを用いた並列コーパス拡張
- Authors: Vibhuti Kumari, Narayana Murthy Kavi,
- Abstract要約: マルチLingual Masked Language Model を用いて、コンテキスト内の代替語をマスキングし、予測する。
センテンス・エンベディング(Sentence Embeddings)を使用して、お互いの翻訳の可能性が高い文対をチェックし、選択する。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper we propose a novel method of augmenting parallel text corpora which promises good quality and is also capable of producing many fold larger corpora than the seed corpus we start with. We do not need any additional monolingual corpora. We use Multi-Lingual Masked Language Model to mask and predict alternative words in context and we use Sentence Embeddings to check and select sentence pairs which are likely to be translations of each other. We cross check our method using metrics for MT Quality Estimation. We believe this method can greatly alleviate the data scarcity problem for all language pairs for which a reasonable seed corpus is available.
- Abstract(参考訳): 本稿では, 良質なテキストコーパスを並列テキストコーパスに拡張する手法を提案し, 得られたシードコーパスよりも多くの折りたたみ式コーパスを生成できることを示した。
追加の単言語コーパスは不要である。
我々は、多言語マスク言語モデルを用いて、文脈における代替単語のマスキングと予測を行い、文の組込みを用いて、互いに翻訳される可能性のある文対をチェックし、選択する。
MT品質評価のための指標を用いて手法を横断的に検証する。
本手法は,適切なシードコーパスが利用できるすべての言語ペアにおいて,データ不足の問題を大幅に軽減できると考えている。
関連論文リスト
- Improving Multi-lingual Alignment Through Soft Contrastive Learning [9.454626745893798]
本稿では,事前学習した単言語埋め込みモデルによって測定された文の類似性に基づいて,多言語埋め込みを整合させる新しい手法を提案する。
翻訳文ペアが与えられた場合、言語間埋め込み間の類似性は、単言語教師モデルで測定された文の類似性に従うように、多言語モデルを訓練する。
論文 参考訳(メタデータ) (2024-05-25T09:46:07Z) - Beyond Contrastive Learning: A Variational Generative Model for
Multilingual Retrieval [109.62363167257664]
本稿では,多言語テキスト埋め込み学習のための生成モデルを提案する。
我々のモデルは、$N$言語で並列データを操作する。
本手法は, 意味的類似性, ビットクストマイニング, 言語間質問検索などを含む一連のタスクに対して評価を行う。
論文 参考訳(メタデータ) (2022-12-21T02:41:40Z) - Nonparametric Masked Language Modeling [113.71921977520864]
既存の言語モデル(LM)は、有限語彙上のソフトマックスでトークンを予測する。
NPMは,このソフトマックスを参照コーパス内の各フレーズの非パラメトリック分布に置き換える最初の非パラメトリックマスク付き言語モデルである。
NPMは、コントラスト目的と全コーパス検索に対するバッチ内近似で効率的に訓練することができる。
論文 参考訳(メタデータ) (2022-12-02T18:10:42Z) - Exposing Cross-Lingual Lexical Knowledge from Multilingual Sentence
Encoders [85.80950708769923]
本稿では,多言語言語モデルを用いて,それらのパラメータに格納された言語間語彙の知識量を探索し,元の多言語LMと比較する。
また、この知識を付加的に微調整した多言語モデルにより公開する新しい手法も考案した。
標準ベンチマークの大幅な向上を報告します。
論文 参考訳(メタデータ) (2022-04-30T13:23:16Z) - Unsupervised Multilingual Sentence Embeddings for Parallel Corpus Mining [38.10950540247151]
単言語データのみに依存する多言語文の埋め込みを導出する新しい教師なし手法を提案する。
まず、教師なし機械翻訳を用いて合成並列コーパスを作成し、事前訓練された言語間マスキング言語モデル(XLM)を微調整する。
また, 2つの並列コーパスマイニング作業において, バニラXLMよりも22F1ポイント向上した。
論文 参考訳(メタデータ) (2021-05-21T15:39:16Z) - Learning Contextualised Cross-lingual Word Embeddings and Alignments for
Extremely Low-Resource Languages Using Parallel Corpora [63.5286019659504]
そこで本稿では,小さな並列コーパスに基づく文脈型言語間単語埋め込み学習手法を提案する。
本手法は,入力文の翻訳と再構成を同時に行うLSTMエンコーダデコーダモデルを用いて単語埋め込みを実現する。
論文 参考訳(メタデータ) (2020-10-27T22:24:01Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - Paraphrase Generation as Zero-Shot Multilingual Translation:
Disentangling Semantic Similarity from Lexical and Syntactic Diversity [11.564158965143418]
本稿では,入力に含まれるn-gramの生成を阻害する単純なパラフレーズ生成アルゴリズムを提案する。
一つの多言語NMTモデルから多くの言語でパラフレーズ生成が可能となる。
論文 参考訳(メタデータ) (2020-08-11T18:05:34Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
本稿では,文整合コーパスを利用して頑健な言語間単語表現を実現するCBOW手法のバイリンガル拡張を提案する。
提案手法は,他のすべての手法と比較して,言語間文検索性能を著しく向上させる。
また、ゼロショットのクロスランガル文書分類タスクにおいて、ディープRNN法と同等性を実現する。
論文 参考訳(メタデータ) (2019-12-28T16:18:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。