論文の概要: What do Large Language Models Need for Machine Translation Evaluation?
- arxiv url: http://arxiv.org/abs/2410.03278v2
- Date: Wed, 9 Oct 2024 12:07:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 23:18:36.010650
- Title: What do Large Language Models Need for Machine Translation Evaluation?
- Title(参考訳): 機械翻訳評価に大規模言語モデルは何が必要か?
- Authors: Shenbin Qian, Archchana Sindhujan, Minnie Kabra, Diptesh Kanojia, Constantin Orăsan, Tharindu Ranasinghe, Frédéric Blain,
- Abstract要約: 大規模言語モデル(LLM)は、微調整された多言語事前訓練言語モデルに匹敵する結果が得られる。
本稿では,LLMの機械翻訳品質を評価するために,ソース,参照,翻訳エラー,ガイドラインなどの翻訳情報が必要であるかを検討する。
- 参考スコア(独自算出の注目度): 12.42394213466485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Leveraging large language models (LLMs) for various natural language processing tasks has led to superlative claims about their performance. For the evaluation of machine translation (MT), existing research shows that LLMs are able to achieve results comparable to fine-tuned multilingual pre-trained language models. In this paper, we explore what translation information, such as the source, reference, translation errors and annotation guidelines, is needed for LLMs to evaluate MT quality. In addition, we investigate prompting techniques such as zero-shot, Chain of Thought (CoT) and few-shot prompting for eight language pairs covering high-, medium- and low-resource languages, leveraging varying LLM variants. Our findings indicate the importance of reference translations for an LLM-based evaluation. While larger models do not necessarily fare better, they tend to benefit more from CoT prompting, than smaller models. We also observe that LLMs do not always provide a numerical score when generating evaluations, which poses a question on their reliability for the task. Our work presents a comprehensive analysis for resource-constrained and training-less LLM-based evaluation of machine translation. We release the accrued prompt templates, code and data publicly for reproducibility.
- Abstract(参考訳): さまざまな自然言語処理タスクに大規模言語モデル(LLM)を活用することで、パフォーマンスに関する最上位の主張につながっている。
機械翻訳 (MT) の評価において, LLM は細調整された多言語事前学習言語モデルに匹敵する結果が得られることを示した。
本稿では,MTの品質評価にLLMが必要とする翻訳情報(ソース,参照,翻訳エラー,ガイドラインガイドラインなど)について検討する。
さらに,高,中,低リソース言語をカバーする8つの言語対に対して,ゼロショット,チェイン・オブ・シント(CoT),少数ショットなどのプロンプト技術について検討した。
以上の結果から,LLMを用いた基準翻訳の重要性が示唆された。
大型モデルの方が必ずしも良いとは限りませんが、より小型モデルよりもCoTプロンプトの恩恵を受ける傾向があります。
また,LLMが評価を生成する際に必ずしも数値スコアを提供するとは限らないことも観察し,その課題に対する信頼性に疑問を呈する。
本研究は,LLMを用いた機械翻訳の資源制約とトレーニングレス評価に関する総合的分析である。
再現性のために、アクルドプロンプトテンプレート、コード、データを公開しています。
関連論文リスト
- Think Carefully and Check Again! Meta-Generation Unlocking LLMs for Low-Resource Cross-Lingual Summarization [108.6908427615402]
CLS(Cross-lingual summarization)は、異なるターゲット言語でソーステキストの要約を生成することを目的としている。
現在、インストラクションチューニング付き大規模言語モデル (LLM) は様々な英語タスクで優れている。
近年の研究では、LCSタスクにおけるLCMの性能は、わずかな設定でも満足できないことが示されている。
論文 参考訳(メタデータ) (2024-10-26T00:39:44Z) - Quality or Quantity? On Data Scale and Diversity in Adapting Large Language Models for Low-Resource Translation [62.202893186343935]
低リソース言語に大規模言語モデルを適用するのに何が必要かについて検討する。
我々は、事前トレーニングとスーパーバイザードファインチューニング(SFT)の間に並列データが重要であることを示す。
2つの低リソース言語群にまたがる3つの LLM 実験により,本研究の一般化可能性を示す一貫した傾向が示された。
論文 参考訳(メタデータ) (2024-08-23T00:59:38Z) - Shortcomings of LLMs for Low-Resource Translation: Retrieval and Understanding are Both the Problem [4.830018386227]
本研究では,機械翻訳パイプラインの自動化の一環として,事前学習された大言語モデル(LLM)が低リソース言語から高リソース言語への翻訳を指示する際の文脈内学習能力について検討する。
我々は南ケチュアをスペイン語に翻訳する一連の実験を行い、デジタル化された教育材料と平行コーパスの制約されたデータベースから得られた様々な種類の文脈の情報量について検討する。
論文 参考訳(メタデータ) (2024-06-21T20:02:22Z) - TEaR: Improving LLM-based Machine Translation with Systematic Self-Refinement [26.26493253161022]
大規模言語モデル(LLM)は機械翻訳(MT)において印象的な結果を得た
我々は,体系的LLMに基づく自己精製翻訳フレームワーク,textbfTEaRを紹介する。
論文 参考訳(メタデータ) (2024-02-26T07:58:12Z) - Machine Translation with Large Language Models: Prompt Engineering for
Persian, English, and Russian Directions [0.0]
生成型大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、例外的な習熟性を示している。
我々は,ペルシャ語,英語,ロシア語の言語間組み合わせに着目した2つの普及促進手法とその組み合わせについて調査を行った。
論文 参考訳(メタデータ) (2024-01-16T15:16:34Z) - Lost in the Source Language: How Large Language Models Evaluate the Quality of Machine Translation [64.5862977630713]
本研究では,機械翻訳評価タスクにおいて,Large Language Models (LLM) がソースデータと参照データをどのように活用するかを検討する。
参照情報が評価精度を大幅に向上させるのに対して,意外なことに,ソース情報は時として非生産的である。
論文 参考訳(メタデータ) (2024-01-12T13:23:21Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクを大幅に進歩させた。
近年の研究では、中程度のLLMはタスク固有の微調整後、より大きなLLMよりも優れていることが示されている。
本研究では,特定の言語対に対する文書レベルの機械翻訳(DocMT)にLLMを適用することに焦点を当てた。
論文 参考訳(メタデータ) (2024-01-12T09:29:13Z) - Zero-Shot Cross-Lingual Reranking with Large Language Models for
Low-Resource Languages [51.301942056881146]
アフリカ語における言語間情報検索システムにおいて,大規模言語モデル (LLM) がリランカーとしてどのように機能するかを検討する。
私たちの実装は、英語と4つのアフリカの言語(ハウサ語、ソマリ語、スワヒリ語、ヨルバ語)を対象としています。
我々は、英語のクェリとアフリカの言葉の文節による言語横断的な格付けについて検討する。
論文 参考訳(メタデータ) (2023-12-26T18:38:54Z) - Democratizing LLMs for Low-Resource Languages by Leveraging their English Dominant Abilities with Linguistically-Diverse Prompts [75.33019401706188]
大規模言語モデル(LLM)は、少数の例を単純に観察することで、効果的にタスクを実行することが知られている。
我々は,LLMが任意の言語から英語に翻訳するよう促すために,多種多様な高ソース言語から合成例を組み立てることを提案する。
我々の教師なしプロンプト法は、英語と13のIndic言語と21のアフリカ低リソース言語間の翻訳において、異なる大きさのLLMにおける教師付き少ショット学習と同等に機能する。
論文 参考訳(メタデータ) (2023-06-20T08:27:47Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
大規模言語モデル(LLM)は多言語機械翻訳(MMT)の処理において顕著な可能性を示した。
本稿では, MMT における LLM の利点と課題を体系的に検討する。
また,ChatGPTとGPT-4を含む8つのLLMを徹底的に評価した。
論文 参考訳(メタデータ) (2023-04-10T15:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。