論文の概要: Cogs in a Machine, Doing What They're Meant to Do -- The AMI Submission to the WMT24 General Translation Task
- arxiv url: http://arxiv.org/abs/2410.03381v1
- Date: Fri, 4 Oct 2024 12:48:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:39:00.399523
- Title: Cogs in a Machine, Doing What They're Meant to Do -- The AMI Submission to the WMT24 General Translation Task
- Title(参考訳): マシン内のcogs、それがすべきことをする -- WMT24の一般翻訳タスクへのAMIサブミッション
- Authors: Atli Jasonarson, Hinrik Hafsteinsson, Bjarki Ármannsson, Steinþór Steingrímsson,
- Abstract要約: 本稿では、WMT24の一般翻訳課題に「Arni Magnusson Institute」のチームを提出する。
我々は、英語からアイスランド語への翻訳の方向について研究している。
- 参考スコア(独自算出の注目度): 0.7499722271664147
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the submission of the \'Arni Magnusson Institute's team to the WMT24 General translation task. We work on the English->Icelandic translation direction. Our system comprises four translation models and a grammar correction model. For training our models we carefully curate our datasets, aggressively filtering out sentence pairs that may detrimentally affect the quality of our system's output. Some of our data are collected from human translations and some are synthetically generated. A part of the synthetic data is generated using an LLM, and we find that it increases the translation capability of our system significantly.
- Abstract(参考訳): 本稿では,WMT24の一般翻訳課題に対する「アルニ・マグヌッソン研究所のチーム」の提出について述べる。
我々は、英語からアイスランド語への翻訳の方向について研究している。
本システムは4つの翻訳モデルと文法補正モデルから構成される。
モデルのトレーニングには、データセットを慎重にキュレートし、システムの出力の品質に有害な可能性のある文ペアを積極的にフィルタリングします。
データのいくつかは人間の翻訳から収集され、いくつかは人工的に生成される。
合成データの一部がLLMを用いて生成され,システムの翻訳能力が著しく向上することがわかった。
関連論文リスト
- TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにおいて顕著な性能を示した。
本稿では,自己回帰を通した翻訳を行うTasTeフレームワークを提案する。
WMT22ベンチマークにおける4つの言語方向の評価結果から,既存の手法と比較して,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-06-12T17:21:21Z) - The Fine-Tuning Paradox: Boosting Translation Quality Without Sacrificing LLM Abilities [18.175795328685986]
機械翻訳のための微調整大型言語モデル(LLM)は、全体的な翻訳品質が改善されている。
モデルサイズは70億から65億までの範囲で,LLaMAおよびファルコン系のモデルに対して広範な翻訳評価を行う。
フォーマルなステアリングを行う能力の低下、数ショットの例による技術的翻訳の作成、文書レベルの翻訳を行う能力の低下を観察する。
論文 参考訳(メタデータ) (2024-05-30T14:25:56Z) - Improving Language Models Trained on Translated Data with Continual Pre-Training and Dictionary Learning Analysis [3.16714407449467]
学習言語モデルにおける翻訳と合成データの役割について検討する。
NLLB-3B MTモデルを用いて英語からアラビア語に翻訳した。
これらの問題を是正するために、我々は、合成された高品質のアラビア物語の小さなデータセットでモデルを事前訓練する。
論文 参考訳(メタデータ) (2024-05-23T07:53:04Z) - Unified Model Learning for Various Neural Machine Translation [63.320005222549646]
既存の機械翻訳(NMT)研究は主にデータセット固有のモデルの開発に焦点を当てている。
我々は,NMT(UMLNMT)のための統一モデル学習モデル(Unified Model Learning for NMT)を提案する。
OurNMTは、データセット固有のモデルよりも大幅に改善され、モデルデプロイメントコストが大幅に削減される。
論文 参考訳(メタデータ) (2023-05-04T12:21:52Z) - Effective General-Domain Data Inclusion for the Machine Translation Task
by Vanilla Transformers [0.0]
本稿では,ドイツ語のソース文を英語のターゲット文に翻訳可能なトランスフォーマーベースシステムを提案する。
我々はWMT'13データセットから、ニュースコメンタリーなドイツ語-英語並列文の実験を行った。
We found that including the IWSLT'16 dataset in training help a gain of 2 BLEU score points on the test set of the WMT'13 dataset。
論文 参考訳(メタデータ) (2022-09-28T13:14:49Z) - Unsupervised Neural Machine Translation with Generative Language Models
Only [19.74865387759671]
生成事前学習言語モデルから、最先端の教師なしニューラルネットワーク翻訳システムを導出する方法を示す。
本手法は, 数発増幅, 蒸留, 逆翻訳の3段階からなる。
論文 参考訳(メタデータ) (2021-10-11T17:35:34Z) - Netmarble AI Center's WMT21 Automatic Post-Editing Shared Task
Submission [6.043109546012043]
本稿では,Netmarble による WMT21 Automatic Post-Editing (APE) Shared Task for the English-German Language pairについて述べる。
Facebook FairのWMT19ニュース翻訳モデルは、大規模で強力なトレーニング済みニューラルネットワークを扱うために選ばれた。
性能向上のために、トレーニング後および微調整時に、外部翻訳を拡張機械翻訳(MT)として活用する。
論文 参考訳(メタデータ) (2021-09-14T08:21:18Z) - ChrEnTranslate: Cherokee-English Machine Translation Demo with Quality
Estimation and Corrective Feedback [70.5469946314539]
ChrEnTranslateは、英語と絶滅危惧言語チェロキーとの翻訳のためのオンライン機械翻訳デモシステムである。
統計モデルとニューラルネットワークモデルの両方をサポートし、信頼性をユーザに通知するための品質評価を提供する。
論文 参考訳(メタデータ) (2021-07-30T17:58:54Z) - The USYD-JD Speech Translation System for IWSLT 2021 [85.64797317290349]
本稿では,シドニー大学とJDが共同でIWSLT 2021低リソース音声翻訳タスクを提出したことを述べる。
私たちは、公式に提供されたASRとMTデータセットでモデルをトレーニングしました。
翻訳性能の向上を目的として, バック翻訳, 知識蒸留, 多機能再構成, トランスダクティブファインタニングなど, 最新の効果的な手法について検討した。
論文 参考訳(メタデータ) (2021-07-24T09:53:34Z) - SJTU-NICT's Supervised and Unsupervised Neural Machine Translation
Systems for the WMT20 News Translation Task [111.91077204077817]
我々は英語・中国語・英語・ポーランド語・ドイツ語・アッパー・ソルビアンという3つの言語対の4つの翻訳指導に参加した。
言語ペアの異なる条件に基づいて、我々は多様なニューラルネットワーク翻訳(NMT)技術の実験を行った。
私たちの提出書では、主要なシステムは英語、中国語、ポーランド語、英語、ドイツ語から上セルビア語への翻訳の道順で第一位を獲得しました。
論文 参考訳(メタデータ) (2020-10-11T00:40:05Z) - Lite Training Strategies for Portuguese-English and English-Portuguese
Translation [67.4894325619275]
ポルトガル語・英語・ポルトガル語の翻訳タスクにおいて,T5などの事前学習モデルの使用について検討する。
本稿では,ポルトガル語の文字,例えばダイアレーシス,急性アクセント,墓のアクセントを表すために,英語のトークン化器の適応を提案する。
以上の結果から,本モデルは最新モデルと競合する性能を示しながら,控えめなハードウェアでトレーニングを行った。
論文 参考訳(メタデータ) (2020-08-20T04:31:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。