Chronic Disease Diagnoses Using Behavioral Data
- URL: http://arxiv.org/abs/2410.03386v1
- Date: Fri, 4 Oct 2024 12:52:49 GMT
- Title: Chronic Disease Diagnoses Using Behavioral Data
- Authors: Di Wang, Yidan Hu, Eng Sing Lee, Hui Hwang Teong, Ray Tian Rui Lai, Wai Han Hoi, Chunyan Miao,
- Abstract summary: We aim to diagnose hyperglycemia (diabetes), hyperlipidemia, and hypertension (collectively known as 3H) using own collected behavioral data.
- Score: 42.96592744768303
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Early detection of chronic diseases is beneficial to healthcare by providing a golden opportunity for timely interventions. Although numerous prior studies have successfully used machine learning (ML) models for disease diagnoses, they highly rely on medical data, which are scarce for most patients in the early stage of the chronic diseases. In this paper, we aim to diagnose hyperglycemia (diabetes), hyperlipidemia, and hypertension (collectively known as 3H) using own collected behavioral data, thus, enable the early detection of 3H without using medical data collected in clinical settings. Specifically, we collected daily behavioral data from 629 participants over a 3-month study period, and trained various ML models after data preprocessing. Experimental results show that only using the participants' uploaded behavioral data, we can achieve accurate 3H diagnoses: 80.2\%, 71.3\%, and 81.2\% for diabetes, hyperlipidemia, and hypertension, respectively. Furthermore, we conduct Shapley analysis on the trained models to identify the most influential features for each type of diseases. The identified influential features are consistent with those reported in the literature.
Related papers
- Pre-Ictal Seizure Prediction Using Personalized Deep Learning [0.0]
Approximately 23 million or 30% of epilepsy patients worldwide suffer from drug-resistant epilepsy (DRE)
The unpredictability of seizure occurrences, which causes safety issues as well as social concerns, restrict the lifestyles of DRE patients.
The goal of this research was to employ improved technologies and methods to predict seizures up to two hours before onset.
arXiv Detail & Related papers (2024-10-07T21:04:41Z) - Effect of Clinical History on Predictive Model Performance for Renal Complications of Diabetes [1.4330510916280879]
Diabetes is a chronic disease characterised by a high risk of developing diabetic nephropathy.
The early identification of individuals at heightened risk of such complications or their exacerbation can be of paramount importance to set a correct course of treatment.
We develop an array of logistic regression models to predict, over different prediction horizons, the crossing of clinically relevant glomerular filtration rate (eGFR) thresholds for patients with diabetes.
arXiv Detail & Related papers (2024-09-10T20:27:00Z) - Assessing and Enhancing Large Language Models in Rare Disease Question-answering [64.32570472692187]
We introduce a rare disease question-answering (ReDis-QA) dataset to evaluate the performance of Large Language Models (LLMs) in diagnosing rare diseases.
We collected 1360 high-quality question-answer pairs within the ReDis-QA dataset, covering 205 rare diseases.
We then benchmarked several open-source LLMs, revealing that diagnosing rare diseases remains a significant challenge for these models.
Experiment results demonstrate that ReCOP can effectively improve the accuracy of LLMs on the ReDis-QA dataset by an average of 8%.
arXiv Detail & Related papers (2024-08-15T21:09:09Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
Recent genome-wide association studies (GWAS) have uncovered the genetic basis of complex traits, but show an under-representation of non-European descent individuals.
Here, we assess whether we can improve disease prediction across diverse ancestries using multiomic data.
arXiv Detail & Related papers (2024-04-26T16:39:50Z) - Large Language Multimodal Models for 5-Year Chronic Disease Cohort Prediction Using EHR Data [15.474201222908107]
Chronic diseases such as diabetes are the leading causes of morbidity and mortality worldwide.
We proposed a novel Large Language Multimodal Models (LLMMs) framework incorporating multimodal data for the prediction of chronic disease risk.
Our method combined a text embedding encoder and multi-head attention layer to learn laboratory test values, utilizing a deep neural network (DNN) module to merge blood features with chronic disease semantics into a latent space.
arXiv Detail & Related papers (2024-03-02T22:33:17Z) - Deterioration Prediction using Time-Series of Three Vital Signs and
Current Clinical Features Amongst COVID-19 Patients [6.1594622252295474]
We develop a prognostic model that predicts if a patient will experience deterioration in the forthcoming 3-24 hours.
The model processes routine triadic vital signs: (a) oxygen saturation, (b) heart rate, and (c) temperature.
We train and evaluate the model using data collected from 37,006 COVID-19 patients at NYU Langone Health in New York, USA.
arXiv Detail & Related papers (2022-10-12T02:53:43Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
This paper introduces the first chronic cancer pain dataset, collected as part of the Intelligent Sight and Sound (ISS) clinical trial.
The data collected to date consists of 29 patients, 509 smartphone videos, 189,999 frames, and self-reported affective and activity pain scores.
Using static images and multi-modal data to predict self-reported pain levels, early models show significant gaps between current methods available to predict pain.
arXiv Detail & Related papers (2022-04-07T22:14:37Z) - Supervised multi-specialist topic model with applications on large-scale
electronic health record data [3.322262654060203]
We present MixEHR-S to jointly infer specialist-disease topics from the EHR data.
For efficient inference, we developed a closed-form collapsed variational inference algorithm.
In three applications, MixEHR-S conferred clinically meaningful latent topics among the most predictive latent topics.
arXiv Detail & Related papers (2021-05-04T01:27:11Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.