Pre-Ictal Seizure Prediction Using Personalized Deep Learning
- URL: http://arxiv.org/abs/2410.05491v1
- Date: Mon, 7 Oct 2024 21:04:41 GMT
- Title: Pre-Ictal Seizure Prediction Using Personalized Deep Learning
- Authors: Shriya Jaddu, Sidh Jaddu, Camilo Gutierrez, Quincy K. Tran,
- Abstract summary: Approximately 23 million or 30% of epilepsy patients worldwide suffer from drug-resistant epilepsy (DRE)
The unpredictability of seizure occurrences, which causes safety issues as well as social concerns, restrict the lifestyles of DRE patients.
The goal of this research was to employ improved technologies and methods to predict seizures up to two hours before onset.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Introduction: Approximately 23 million or 30% of epilepsy patients worldwide suffer from drug-resistant epilepsy (DRE). The unpredictability of seizure occurrences, which causes safety issues as well as social concerns, restrict the lifestyles of DRE patients. Surgical solutions and EEG-based solutions are very expensive, unreliable, invasive or impractical. The goal of this research was to employ improved technologies and methods to epilepsy patient physiological data and predict seizures up to two hours before onset, enabling non-invasive, affordable seizure prediction for DRE patients. Methods: This research used a 1D Convolutional Neural Network-Based Bidirectional Long Short-Term Memory network that was trained on a diverse set of epileptic patient physiological data to predict seizures. Transfer learning was further utilized to personalize and optimize predictions for specific patients. Clinical data was retrospectively obtained for nine epilepsy patients via wearable devices over a period of about three to five days from a prospectively maintained database. The physiological data included 54 seizure occurrences and included heart rate, blood volume pulse, accelerometry, body temperature, and electrodermal activity. Results and Conclusion: A general deep-learning model trained on the physiological data with randomly sampled test data achieved an accuracy of 91.94%. However, such a generalized deep learning model had varied performances on data from unseen patients. When the general model was personalized (further trained) with patient-specific data, the personalized model achieved significantly improved performance with accuracies as high as 97%. This preliminary research shows that patient-specific personalization may be a viable approach to achieve affordable, non-invasive seizure prediction that can improve the quality of life for DRE patients.
Related papers
- Preictal Period Optimization for Deep Learning-Based Epileptic Seizure Prediction [0.0]
We develop a competitive deep learning model for seizure prediction using scalp electroencephalogram (EEG) signals.
We trained and evaluated our model on 19 pediatric patients of the open-access CHB-MIT dataset in a subject-specific manner.
Using the OPP of each patient, preictal and interictal segments were correctly identified with an average sensitivity of 99.31%, specificity of 95.34%, AUC of 99.35%, and F1- score of 97.46%.
arXiv Detail & Related papers (2024-07-20T13:49:14Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Integrated Convolutional and Recurrent Neural Networks for Health Risk
Prediction using Patient Journey Data with Many Missing Values [9.418011774179794]
This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks.
Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation.
arXiv Detail & Related papers (2022-11-11T07:36:18Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - Bridging the Gap Between Patient-specific and Patient-independent
Seizure Prediction via Knowledge Distillation [7.2666838978096875]
Existing approaches typically train models in a patient-specific fashion due to the highly personalized characteristics of epileptic signals.
A patient-specific model can then be obtained with the help of distilled knowledge and additional personalized data.
Five state-of-the-art seizure prediction methods are trained on the CHB-MIT sEEG database with our proposed scheme.
arXiv Detail & Related papers (2022-02-25T10:30:29Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Patient-independent Epileptic Seizure Prediction using Deep Learning
Models [39.19336481493405]
The purpose of a seizure prediction system is to successfully identify the pre-ictal brain stage, which occurs before a seizure event.
Patient-independent seizure prediction models are designed to offer accurate performance across multiple subjects within a dataset.
We propose two patient-independent deep learning architectures with different learning strategies that can learn a global function utilizing data from multiple subjects.
arXiv Detail & Related papers (2020-11-18T23:13:48Z) - Longitudinal modeling of MS patient trajectories improves predictions of
disability progression [2.117653457384462]
This work addresses the task of optimally extracting information from longitudinal patient data in the real-world setting.
We show that with machine learning methods suited for patient trajectories modeling, we can predict disability progression of patients in a two-year horizon.
Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction.
arXiv Detail & Related papers (2020-11-09T20:48:00Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.