Quantum circuit complexity for linearly polarised light
- URL: http://arxiv.org/abs/2410.03391v1
- Date: Fri, 4 Oct 2024 12:55:06 GMT
- Title: Quantum circuit complexity for linearly polarised light
- Authors: E. M. F. Curado, S. Faci, J. P. Gazeau, T. Koide, A. C. Maioli, D. Noguera,
- Abstract summary: We explore a form of quantum circuit complexity that extends to open systems.
Specifically, we investigate the dynamics of mixed quantum states as they undergo interactions with a sequence of gates.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we explore a form of quantum circuit complexity that extends to open systems. To illustrate our methodology, we focus on a basic model where the projective Hilbert space of states is depicted by the set of orientations in the Euclidean plane. Specifically, we investigate the dynamics of mixed quantum states as they undergo interactions with a sequence of gates. Our approach involves the analysis of sequences of real $2\times2$ density matrices. This mathematical model is physically exemplified by the Stokes density matrices, which delineate the linear polarisation of a quasi-monochromatic light beam, and the gates, which are viewed as quantum polarisers, whose states are also real $2\times2$ density matrices. The interaction between polariser-linearly polarised light is construed within the context of this quantum formalism. Each density matrix for the light evolves in an approach analogous to a Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) process during the time interval between consecutive gates. Notably, when considering an upper limit for the cost function or tolerance or accuracy, we unearth that the optimal number of gates follows a power-law relationship.
Related papers
- The multi-state geometry of shift current and polarization [44.99833362998488]
We employ quantum state projectors to develop an explicitly gauge-invariant formalism.
We provide a simple expression for the shift current that resolves its precise relation to the moments of electronic polarization.
We reveal its decomposition into the sum of the skewness of the occupied states and intrinsic multi-state geometry.
arXiv Detail & Related papers (2024-09-24T18:00:02Z) - Deterministic photonic entanglement arising from non-Abelian quantum holonomy [0.0]
We develop a protocol for creating and manipulating highly-entangled superpositions of well-controlled states of light.
Our calculations indicate that a subset of such entangled superpositions are maximally-entangled, "volume-law" states.
We envision that this entangling mechanism could be utilized for realizing universal, entangling quantum gates with linear photonic elements alone.
arXiv Detail & Related papers (2024-07-29T18:32:33Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Amorphous quantum magnets in a two-dimensional Rydberg atom array [44.99833362998488]
We propose to explore amorphous quantum magnets with an analog quantum simulator.
We first present an algorithm to generate amorphous quantum magnets, suitable for Rydberg simulators of the Ising model.
We then use semiclassical approaches to get a preliminary insight of the physics of the model.
arXiv Detail & Related papers (2024-02-05T10:07:10Z) - Symplectic and Lagrangian Polar Duality; Applications to Quantum
Information Geometry [0.0]
We study two symplectically covariant versions of polar duality.
The first variant makes use of the symplectic form on phase space and allows a precise study of the covariance matrix of a density operator.
The second variant is a symplectically covariant version of the usual polar duality highlighting the role played by Lagrangian planes.
arXiv Detail & Related papers (2023-09-14T15:07:39Z) - Quantum Gate Generation in Two-Level Open Quantum Systems by Coherent
and Incoherent Photons Found with Gradient Search [77.34726150561087]
We consider an environment formed by incoherent photons as a resource for controlling open quantum systems via an incoherent control.
We exploit a coherent control in the Hamiltonian and an incoherent control in the dissipator which induces the time-dependent decoherence rates.
arXiv Detail & Related papers (2023-02-28T07:36:02Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - On optimization of coherent and incoherent controls for two-level
quantum systems [77.34726150561087]
This article considers some control problems for closed and open two-level quantum systems.
The closed system's dynamics is governed by the Schr"odinger equation with coherent control.
The open system's dynamics is governed by the Gorini-Kossakowski-Sudarshan-Lindblad master equation.
arXiv Detail & Related papers (2022-05-05T09:08:03Z) - Quantum chaos and the complexity of spread of states [0.0]
We propose a measure of quantum state complexity defined by minimizing the spread of the wave-function over all choices of basis.
Our measure is controlled by the "survival amplitude" for a state to remain unchanged, and can be efficiently computed in theories with discrete spectra.
arXiv Detail & Related papers (2022-02-14T19:00:00Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Recovering quantum correlations in optical lattices from interaction
quenches [0.0]
Quantum simulations with ultra-cold atoms in optical lattices open up an exciting path towards understanding strongly interacting quantum systems.
Currently a direct measurement of local coherent currents is out of reach.
We show how to achieve that by measuring densities that are altered in response to quenches to non-interacting dynamics.
arXiv Detail & Related papers (2020-05-18T18:03:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.