Deterministic photonic entanglement arising from non-Abelian quantum holonomy
- URL: http://arxiv.org/abs/2407.20368v2
- Date: Sat, 2 Nov 2024 11:51:59 GMT
- Title: Deterministic photonic entanglement arising from non-Abelian quantum holonomy
- Authors: Aniruddha Bhattacharya, Chandra Raman,
- Abstract summary: We develop a protocol for creating and manipulating highly-entangled superpositions of well-controlled states of light.
Our calculations indicate that a subset of such entangled superpositions are maximally-entangled, "volume-law" states.
We envision that this entangling mechanism could be utilized for realizing universal, entangling quantum gates with linear photonic elements alone.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Realizing deterministic, high-fidelity entangling interactions--of the kind that can be utilized for efficient quantum information processing--between photons remains an elusive goal. Here, we address this long-standing issue by devising a protocol for creating and manipulating highly-entangled superpositions of well-controlled states of light by using an on-chip photonic system that has recently been shown to implement three-dimensional, non-Abelian quantum holonomy. Our calculations indicate that a subset of such entangled superpositions are maximally-entangled, "volume-law" states, and that the underlying entanglement can be distilled and purified for applications in quantum science. Crucially, we generalize this approach to demonstrate the potentiality of deterministically entangling two arbitrarily high, $N$-dimensional quantum systems, by formally establishing a deep connection between the matrix representations of the unitary quantum holonomy--within energy-degenerate subspaces in which the total excitation number is conserved--and the $\left(2j+1\right)$-dimensional irreducible representations of the rotation operator, where $j = \left(N-1\right)/2$ and $N \geq 2$. Specifically, we envisage that this entangling mechanism could be utilized for realizing universal, entangling quantum gates with linear photonic elements alone.
Related papers
- Absolute dimensionality of quantum ensembles [41.94295877935867]
The dimension of a quantum state is traditionally seen as the number of superposed distinguishable states in a given basis.
We propose an absolute, i.e.basis-independent, notion of dimensionality for ensembles of quantum states.
arXiv Detail & Related papers (2024-09-03T09:54:15Z) - Subtraction and Addition of Propagating Photons by Two-Level Emitters [2.321156230142032]
We show that a passive two-level nonlinearity suffices to implement non-Gaussian quantum operations on propagating field modes.
We accurately describe the single-photon subtraction process by elements of an intuitive quantum-trajectory model.
arXiv Detail & Related papers (2024-04-18T16:55:33Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Engineering quantum states from a spatially structured quantum eraser [0.0]
Quantum interference can be enabled by projecting the quantum state onto ambiguous properties that render the photons indistinguishable.
By combining these ideas, here we design and experimentally demonstrate a simple and robust scheme that tailors quantum interference to engineer photonic states.
We believe these spatially-engineered multi-photon quantum states may be of significance in fields such as quantum metrology, microscopy, and communications.
arXiv Detail & Related papers (2023-06-24T00:11:36Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Revealing higher-order light and matter energy exchanges using quantum
trajectories in ultrastrong coupling [0.0]
We extend the formalism of quantum trajectories to open quantum systems with ultrastrong coupling.
We analyze the impact of the chosen unravelling (i.e., how one collects the output field of the system) for the quantum trajectories.
arXiv Detail & Related papers (2021-07-19T11:22:12Z) - Spatial and polarization entanglement of three photons in a
discrete-time quantum walk [0.0]
We investigate quantum entanglement of three photons performing discrete-time quantum walk (DTQW) on the nearest-neighbor sites of a square lattice.
In addition to spatial entanglement, we analyze the possibility of entanglement in the polarization basis, too.
arXiv Detail & Related papers (2020-11-11T17:30:07Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Engineering continuous and discrete variable quantum vortex states by
nonlocal photon subtraction in a reconfigurable photonic chip [0.0]
We study the production of entangled two- and N-mode quantum states of light in optical waveguides.
We propose a quantum photonic circuit that produces a reconfigurable superposition of photon subtraction on two single-mode squeezed states.
arXiv Detail & Related papers (2020-04-11T11:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.