論文の概要: EBES: Easy Benchmarking for Event Sequences
- arxiv url: http://arxiv.org/abs/2410.03399v2
- Date: Tue, 25 Feb 2025 20:02:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:54:18.779589
- Title: EBES: Easy Benchmarking for Event Sequences
- Title(参考訳): EBES: イベントシーケンスのベンチマークを容易にする
- Authors: Dmitry Osin, Igor Udovichenko, Viktor Moskvoretskii, Egor Shvetsov, Evgeny Burnaev,
- Abstract要約: イベントシーケンス(英: Event Sequences、EvS)とは、不規則なサンプリング間隔と分類的特徴と数値的特徴の混合を特徴とするシーケンシャルデータである。
EBESは、シーケンスレベルのターゲットを持つEvS分類のための包括的なベンチマークである。
9つのモダンモデルを実装したオープンソースのPyTorchライブラリとともに、標準化された評価シナリオとプロトコルを備えている。
- 参考スコア(独自算出の注目度): 17.277513178760348
- License:
- Abstract: Event Sequences (EvS) refer to sequential data characterized by irregular sampling intervals and a mix of categorical and numerical features. Accurate classification of these sequences is crucial for various real-life applications, including healthcare, finance, and user interaction. Despite the popularity of the EvS classification task, there is currently no standardized benchmark or rigorous evaluation protocol. This lack of standardization makes it difficult to compare results across studies, which can result in unreliable conclusions and hinder progress in the field. To address this gap, we present EBES, a comprehensive benchmark for EvS classification with sequence-level targets. EBES features standardized evaluation scenarios and protocols, along with an open-source PyTorch library that implements 9 modern models. Additionally, it includes the largest collection of EvS datasets, featuring 10 curated datasets, including a novel synthetic dataset and real-world data with the largest publicly available banking dataset. The library offers user-friendly interfaces for integrating new methods and datasets. Our benchmarking results highlight the unique properties of EvS compared to other sequential data types, provide a performance ranking of modern models with GRU-based models achieving the best results and reveal the challenges associated with robust EvS learning. The goal of EBES is to facilitate reproducible research, expedite progress in the field, and increase the real-world impact of EvS classification techniques.
- Abstract(参考訳): イベントシーケンス(英: Event Sequences、EvS)とは、不規則なサンプリング間隔と分類的特徴と数値的特徴の混合を特徴とするシーケンシャルデータである。
これらのシーケンスの正確な分類は、医療、ファイナンス、ユーザーインタラクションなど、さまざまな現実的な応用に不可欠である。
EvS分類タスクの人気にもかかわらず、現在標準化されたベンチマークや厳格な評価プロトコルはない。
この標準化の欠如は、研究全体での結果を比較するのを難しくし、信頼性の低い結論を導き、この分野の進歩を妨げる可能性がある。
このギャップに対処するため、EBESは、シーケンスレベルのターゲットを持つEvS分類のための包括的なベンチマークである。
EBESは9つのモダンモデルを実装したオープンソースのPyTorchライブラリとともに、標準化された評価シナリオとプロトコルを備えている。
さらに、EvSデータセットの最大のコレクションが含まれており、10のキュレートされたデータセットが特徴だ。
このライブラリは、新しいメソッドとデータセットを統合するためのユーザフレンドリーなインターフェイスを提供する。
ベンチマークの結果は、他の逐次データ型と比較して、EvSのユニークな特性を強調し、GRUベースのモデルによる最新のモデルのパフォーマンスランキングを提供し、最良の結果を達成するとともに、堅牢なEvS学習に関わる課題を明らかにする。
EBESの目的は、再現可能な研究の促進、分野の進歩の迅速化、EvS分類技術の現実世界への影響を高めることである。
関連論文リスト
- Generating Diverse Synthetic Datasets for Evaluation of Real-life Recommender Systems [0.0]
合成データセットは、機械学習モデルの評価とテストに重要である。
我々は,多様かつ統計的に一貫性のある合成データセットを生成するための新しいフレームワークを開発する。
このフレームワークは、最小限の摩擦で研究を容易にする無料のオープンPythonパッケージとして利用できる。
論文 参考訳(メタデータ) (2024-11-27T09:53:14Z) - How Hard is this Test Set? NLI Characterization by Exploiting Training Dynamics [49.9329723199239]
本稿では, 実例と非実例を手作業で構築することなく, 挑戦的なテストセットを自動生成する手法を提案する。
一般的なNLIデータセットのテストセットを,トレーニングダイナミクスを利用した3つの難易度に分類する。
我々の評価法がトレーニングセットに適用された場合、トレーニング対象データのごく一部でトレーニングされたモデルは、フルデータセットでトレーニングされたモデルに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-10-04T13:39:21Z) - Capturing Temporal Components for Time Series Classification [5.70772577110828]
本研究では,逐次データから抽出した統計的コヒーレントな成分に基づいて学習したテキスト合成表現学習手法を提案する。
マルチスケールな変更空間に基づいて、シーケンシャルデータを類似の統計特性を持つチャンクに分割する教師なしの手法を提案する。
シーケンスベースのエンコーダモデルをマルチタスク設定でトレーニングし、時系列分類のための時間成分から合成表現を学習する。
論文 参考訳(メタデータ) (2024-06-20T16:15:21Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
我々はGenomic Foundation Modelsの有効性を評価するためのベンチマークスイートであるGenBenchを紹介する。
GenBenchはモジュラーで拡張可能なフレームワークを提供し、様々な最先端の方法論をカプセル化している。
本稿では,タスク固有性能におけるモデルアーキテクチャとデータセット特性の相互作用のニュアンス解析を行う。
論文 参考訳(メタデータ) (2024-06-01T08:01:05Z) - MADS: Modulated Auto-Decoding SIREN for time series imputation [9.673093148930874]
我々は,暗黙のニューラル表現に基づく時系列計算のための新しい自動デコードフレームワークMADSを提案する。
実世界の2つのデータセット上で本モデルを評価し,時系列計算における最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-03T09:08:47Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
本研究では, 合成性能の評価に関する実証的研究を行い, 生成モデルの代表としてGAN(Generative Adversarial Network)を用いた。
特に、表現空間におけるデータポイントの表現方法、選択したサンプルを用いた公平距離の計算方法、各集合から使用可能なインスタンス数など、さまざまな要素の詳細な分析を行う。
論文 参考訳(メタデータ) (2023-04-04T17:54:32Z) - Detection and Evaluation of Clusters within Sequential Data [58.720142291102135]
Block Markov Chainsのクラスタリングアルゴリズムは理論的最適性を保証する。
特に、私たちのシーケンシャルデータは、ヒトのDNA、テキスト、動物運動データ、金融市場から派生しています。
ブロックマルコフ連鎖モデルの仮定は、実際に探索データ解析において有意義な洞察を得られることが判明した。
論文 参考訳(メタデータ) (2022-10-04T15:22:39Z) - Robust Event Classification Using Imperfect Real-world PMU Data [58.26737360525643]
本研究では,不完全な実世界のファサー計測単位(PMU)データを用いて,ロバストな事象分類について検討する。
我々は、堅牢なイベント分類器を訓練するための新しい機械学習フレームワークを開発する。
論文 参考訳(メタデータ) (2021-10-19T17:41:43Z) - Synthetic Benchmarks for Scientific Research in Explainable Machine
Learning [14.172740234933215]
我々はXAI-Benchをリリースした。XAI-Benchは、合成データセットと、特徴属性アルゴリズムをベンチマークするためのライブラリである。
実世界のデータセットとは異なり、合成データセットは条件付き期待値の効率的な計算を可能にする。
いくつかの評価指標にまたがって一般的な説明可能性手法をベンチマークし、一般的な説明者にとっての障害モードを特定することで、ライブラリのパワーを実証する。
論文 参考訳(メタデータ) (2021-06-23T17:10:21Z) - Benchmarking the Benchmark -- Analysis of Synthetic NIDS Datasets [4.125187280299247]
我々は,より最近で関連する3つのNIDSデータセットにおいて,良性トラフィックの統計的性質を解析した。
以上の結果から,合成データセットと実世界の2つのデータセットの統計的特徴の相違が明らかとなった。
論文 参考訳(メタデータ) (2021-04-19T03:17:37Z) - BREEDS: Benchmarks for Subpopulation Shift [98.90314444545204]
本研究では,人口変動に対するモデルのロバスト性を評価する手法を開発した。
既存のデータセットの基盤となるクラス構造を利用して、トレーニングとテストの分散を構成するデータサブポピュレーションを制御する。
この手法をImageNetデータセットに適用し、様々な粒度のサブポピュレーションシフトベンチマークスイートを作成する。
論文 参考訳(メタデータ) (2020-08-11T17:04:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。