論文の概要: A Simple Framework for Secure Key Leasing
- arxiv url: http://arxiv.org/abs/2410.03413v1
- Date: Fri, 4 Oct 2024 13:24:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 22:29:14.896242
- Title: A Simple Framework for Secure Key Leasing
- Title(参考訳): セキュアなキーリースのためのシンプルなフレームワーク
- Authors: Fuyuki Kitagawa, Tomoyuki Morimae, Takashi Yamakawa,
- Abstract要約: 鍵取り消し可能な暗号により、暗号鍵を量子状態としてリースし、鍵を後で検証可能な方法で取り消すことができる。
本稿では,BB84状態の復号性を利用した暗号プリミティブをセキュアな鍵リースで構築するための簡単なフレームワークを提案する。
- 参考スコア(独自算出の注目度): 10.04587045407742
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Secure key leasing (a.k.a. key-revocable cryptography) enables us to lease a cryptographic key as a quantum state in such a way that the key can be later revoked in a verifiable manner. We propose a simple framework for constructing cryptographic primitives with secure key leasing via the certified deletion property of BB84 states. Based on our framework, we obtain the following schemes. - A public key encryption scheme with secure key leasing that has classical revocation based on any IND-CPA secure public key encryption scheme. Prior works rely on either quantum revocation or stronger assumptions such as the quantum hardness of the learning with errors (LWE) problem. - A pseudorandom function with secure key leasing that has classical revocation based on one-way functions. Prior works rely on stronger assumptions such as the quantum hardness of the LWE problem. - A digital signature scheme with secure key leasing that has classical revocation based on the quantum hardness of the short integer solution (SIS) problem. Our construction has static signing keys, i.e., the state of a signing key almost does not change before and after signing. Prior constructions either rely on non-static signing keys or indistinguishability obfuscation to achieve a stronger goal of copy-protection. In addition, all of our schemes remain secure even if a verification key for revocation is leaked after the adversary submits a valid certificate of deletion. To our knowledge, all prior constructions are totally broken in this setting. Moreover, in our view, our security proofs are much simpler than those for existing schemes.
- Abstract(参考訳): セキュアな鍵リース(すなわち、鍵取り消し可能な暗号)により、暗号鍵を量子状態としてリースし、鍵を検証可能な方法で取り消すことができる。
本稿では,BB84状態の復号化特性を利用して,暗号プリミティブをセキュアな鍵リースで構築するための簡単なフレームワークを提案する。
この枠組みに基づき、以下のスキームを得る。
-IND-CPAのセキュアな公開鍵暗号スキームに基づいて古典的な取り消しを行うセキュアな鍵リースを備えた公開鍵暗号スキーム。
以前の研究は、量子的取り消しか、LWE問題による学習の量子的硬度のようなより強い仮定に依存していた。
-一方の関数に基づいて古典的な取り消しを行うセキュアな鍵リースを持つ擬似乱数関数。
以前の研究は、LWE問題の量子硬度のような強い仮定に依存していた。
-ショート整数解(SIS)問題の量子硬度に基づく古典的取り消しを有するセキュアな鍵リース付きデジタル署名スキーム。
私たちの構造には静的な署名キーがあります。つまり、署名キーの状態は署名前後でほとんど変化しません。
以前の構成では、コピー保護というより強力な目標を達成するために、非静的署名キーや識別不能な難読化に依存していた。
さらに、敵が削除の有効な証明書を提出した後、取り消しの検証キーが漏洩しても、これらのスキームはすべて安全である。
私たちの知る限り、この設定では、以前の構成はすべて完全に壊れています。
さらに、我々の見解では、我々のセキュリティ証明は既存のスキームよりもはるかに単純である。
関連論文リスト
- CodeChameleon: Personalized Encryption Framework for Jailbreaking Large
Language Models [49.60006012946767]
パーソナライズされた暗号化手法に基づく新しいジェイルブレイクフレームワークであるCodeChameleonを提案する。
我々は、7つの大規模言語モデルに関する広範な実験を行い、最先端の平均アタック成功率(ASR)を達成する。
GPT-4-1106上で86.6%のASRを実現する。
論文 参考訳(メタデータ) (2024-02-26T16:35:59Z) - Revocable Quantum Digital Signatures [57.25067425963082]
我々は、LWE仮定から取り消し可能な署名キーでデジタル署名を定義し、構築する。
このプリミティブでは、署名キーは、ユーザーが多くのメッセージに署名できる量子状態である。
一度キーが取り消されたら、キーの最初の受信者が署名する能力を失うことを要求します。
論文 参考訳(メタデータ) (2023-12-21T04:10:07Z) - Quantum Key Leasing for PKE and FHE with a Classical Lessor [19.148581164364387]
安全な鍵リースの問題は、取り消し可能暗号(revocable cryptography)としても知られる。
この問題は、量子情報の不可避な性質を活用することを目的としている。
我々は、(古典的な)公開鍵・同型暗号方式の復号鍵をリースするために、セキュアな鍵リース方式を構築した。
論文 参考訳(メタデータ) (2023-10-22T15:25:29Z) - Quantum Public-Key Encryption with Tamper-Resilient Public Keys from One-Way Functions [12.45203887838637]
我々は一方通行関数から量子公開鍵暗号を構築する。
私たちの構成では、公開鍵は量子だが、暗号文は古典的である。
論文 参考訳(メタデータ) (2023-04-04T13:57:17Z) - Revocable Cryptography from Learning with Errors [61.470151825577034]
我々は、量子力学の非閉鎖原理に基づいて、キー呼び出し機能を備えた暗号スキームを設計する。
我々は、シークレットキーが量子状態として表現されるスキームを、シークレットキーが一度ユーザから取り消されたら、それらが以前と同じ機能を実行する能力を持たないことを保証して検討する。
論文 参考訳(メタデータ) (2023-02-28T18:58:11Z) - Public Key Encryption with Secure Key Leasing [24.410596031297242]
セキュア鍵リース(PKE-SKL)を用いた公開鍵暗号の概念を導入する。
我々の考え方は,Ananth と La Placa (Eurocrypt 2021) が導入したセキュアソフトウェアリース (SSL) の概念と精神的に類似している。
より詳しくは、我々の敵は海賊版ソフトウェアを実行するために正直な評価アルゴリズムを使うことに制限されていない。
論文 参考訳(メタデータ) (2023-02-22T21:37:57Z) - Functional Encryption with Secure Key Leasing [6.375982344506753]
暗号化プリミティブによって ソフトウェアを ユーザーにリースできる 量子状態にエンコードする
セキュアなソフトウェアリースは、返却されたソフトウェアが有効かどうかを検証するメカニズムを持っている。
我々は秘密鍵機能暗号(FEE)の概念を導入し,鍵リースを安全に行う。
論文 参考訳(メタデータ) (2022-09-27T00:15:00Z) - Quantum Proofs of Deletion for Learning with Errors [91.3755431537592]
完全同型暗号方式として, 完全同型暗号方式を初めて構築する。
我々の主要な技術要素は、量子証明器が古典的検証器に量子状態の形でのLearning with Errors分布からのサンプルが削除されたことを納得させる対話的プロトコルである。
論文 参考訳(メタデータ) (2022-03-03T10:07:32Z) - Recovering AES Keys with a Deep Cold Boot Attack [91.22679787578438]
コールドブート攻撃は、電源がシャットダウンされた直後に破損したランダムアクセスメモリを検査する。
本研究では,AES鍵に対する攻撃を適用するために,深誤り訂正符号手法の新たな暗号版とSATソルバ方式を併用する。
以上の結果から,本手法は攻撃方法の精度を極めて高いマージンで上回っていることが明らかとなった。
論文 参考訳(メタデータ) (2021-06-09T07:57:01Z) - Quantum Encryption with Certified Deletion, Revisited: Public Key,
Attribute-Based, and Classical Communication [10.973034520723957]
ブロードベントとイスラム教は量子暗号プリミティブを提案した。
このプリミティブでは、量子暗号文を所持している受信機は、暗号化されたメッセージが削除された古典的な証明書を生成することができる。
削除証明書はプライベートに検証可能であるため、証明書の検証キーを秘密にしておく必要があるが、ブロードベントとイスラム教の定義では、公的な検証可能性も考慮できる。
論文 参考訳(メタデータ) (2021-05-12T01:41:46Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
量子鍵分布(QKD)システムのセキュリティ脆弱性について概説する。
我々は主に、盗聴攻撃の源となるバックフラッシュ光(backflash light)と呼ばれる特定の効果に焦点を当てる。
論文 参考訳(メタデータ) (2020-03-23T18:23:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。